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Abstract: This study proposes a BCI robot control system that mitigates information loss in low-channel EEG-based BCI
environments while reducing user burden by minimizing the number of electrodes, thereby enabling stable robot control.
The proposed system takes MI-9 low-channel EEG signals from the BCI Competition IV Dataset 2a as input and restores
full 22-channel EEG signals using a conditional diffusion-based generative model, compensating for the spatial neural
information required for classification under constrained measurement conditions. Based on the restored EEG signals,
motor imagery classification is performed, and the classification results are interpreted as user intent within a ROS2
environment and translated into robot control commands, establishing a continuous end-to-end connection between BCI
and robotic control. In addition, a LIDAR-based safety filter is applied to decelerate or stop the robot in hazardous forward
situations, ensuring environmental safety while preserving user intent. Simulation experiments validate the

reproducibility of the proposed system and its collision avoidance performance.

1. Introduction

Brain—computer interfaces (BCIs) provide an
alternative pathway for individuals with severe motor
impairments to control robotic arms, assistive devices, and
mobile robots.!) In particular, non-invasive EEG-based
BCIs are attractive due to their clinical feasibility and
accessibility; however, they inherently suffer from
limitations in stable intent inference and long-term
operation caused by low signal-to-noise ratio (SNR),
inter-subject  variability, and inter-session non-
stationarity.® Nevertheless, recent studies have demonstr
-ated that continuous-level robot control is achievable
using non-invasive signals alone, thereby accelerating the
transition of BCI technologies toward real-world usage
scenarios.®

One of the most critical practical bottlenecks hindering
the deployment of BClIs is the user burden associated with
an increasing number of electrodes or channels. While
high-density EEG provides richer spatial resolution, it
significantly degrades usability in daily environments due
to prolonged setup time, increased difficulty in electrode
placement and alignment, contact impedance manageme
-nt, and reduced mobility. Consequently, approaches
that can secure the information required for classification
and control “with fewer electrodes” are essential. This
challenge extends beyond signal processing optimization

and directly translates into a system-level design problem
aimed at improving user comfort and wearability.

Reducing the number of EEG channels enhances
wearability but inevitably leads to the loss of spatial
patterns—particularly inter-channel relationships—that
are critical for motor imagery (MI) classification,
resulting in degraded classification performance and
control stability.©® This issue is not merely a matter of
model accuracy; when propagated to robotic control,
accumulated errors may escalate into safety risks.
Furthermore, while BCI-based robot control must
primarily reflect user intent, real-world environments
require concurrent sensor-based hazard assessment. This
necessitates an explicit definition of the boundary between
“preserving user intent” and “safety intervention.”

The objective of this study is to ensure stability and
reproducibility at the system level, including robotic
control, under the premise of electrode minimization
through low-channel EEG observation. To this end, we
propose a framework that: (1) restores multi-channel EEG
representations from low-channel observations using a
generative model to compensate for missing spatial
information; (2) estimates user intent through motor
imagery classification based on the restored EEG signals;
(3) converts the inferred intent into robot control
commands within a ROS2-based modular architecture;
and (4) applies a LIDAR-based safety filter that intervenes
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only by decelerating or stopping the robot in hazardous
situations. Importantly, the safety filter is not designed to
replace autonomous navigation but rather to preserve user
intent by default while performing limited intervention
exclusively in risk scenarios, thereby ensuring interpretabi
-lity and experimental controllability.

The main contributions of this work are summarized as
follows:
1. Channel restoration—based BCI pipeline for
electrode minimization: Low-channel EEG signals
(e.g., MI-9) are used as observations, while multi-
channel representations (e.g., 22 channels) are
restored via a conditional generative model to
enrich the input information for the classification
stage.

2. End-to-end integration of restoration, classification,
and control: The entire processing chain—from
EEG restoration and classification to ROS2-based
control topics—is constructed in a modular manner
to enhance reproducibility and extensibility.

3. Intent-preserving safety intervention architecture:
Final robot velocity commands prioritize user intent,
while a LiDAR-based safety filter enforces
deceleration or stopping only when environmental
hazards are detected, achieving a balance between
intent preservation and environmental safety.

4.  Simulation-based reproducibility validation
framework: A reproducible experimental protocol is
provided using Gazebo simulation and ROS2
logging, ensuring identical robot behavior under
identical inputs and parameters.

By placing wearability constraints—specifically
electrode count at the center of system design, this
approach aligns with the broader trajectory of extending
non-invasive BCIs toward robotic control while targeting
practical usability improvements. Considering the widely
recognized challenges of long-term stability and
variability in BCI systems, the modular separation of
restoration, classification, and safety control offers a
favorable foundation for future extension to real-world,
online EEG data.

2. Diffusion Model-Based EEG Channel
Restoration

Diffusion-based generative models are formulated as

probabilistic frameworks that generate samples through a
forward diffusion process, in which the data distribution
is gradually corrupted into Gaussian noise, and a reverse
denoising process, in which the original data are
reconstructed using a learned model.”’ Early diffusion
probabilistic models were first systematically introduced
from a nonequilibrium thermodynamics perspective,
proposing the principle of “progressive noise injection and
reverse-process learning,” and were later refined through
neural network—based parameterization and simplification
of training objectives.®

In particular, denoising diffusion probabilistic models
(DDPMs) implement the reverse diffusion process as
iterative denoising steps and demonstrate high-quality
generative performance through their connection to score
matching, thereby accelerating the practical adoption of
diffusion models. Subsequent advancements—including
accelerated sampling techniques such as DDIM to reduce
computational cost, model variants that improve
generation quality, likelihood estimation, and sample
efficiency, as well as guidance-based methods that control
the quality—diversity trade-off in conditional generation—
have extended diffusion models beyond image synthesis
to a wide range of conditional generation and restoration
tasks.®

More recently, the structural paradigm of “progressive
restoration from noise” has been applied to time-series
and biosignals. In this context, several studies have
emerged that reformulate conditional restoration
problems—such as channel interpolation and spatial
super-resolution—in low signal-to-noise ratio and highly
variable signals like EEG from a generative modeling
perspective.(1?

2.1. Preprocessing and Input Construction

In this study, a consistent preprocessing pipeline was
applied to the BCI Competition IV Dataset 2a
(BCICIV _2a) to ensure stable training and reproducibility
of the EEG channel restoration and motor imagery
classification models. The objectives of preprocessing are
threefold: (i) to improve the signal-to-noise ratio by
removing noise and non-physiological artifacts, (ii) to
construct a uniform input representation across all
subjects and sessions, and (iii) to generate fixed-
dimensional input tensors required by the generative and
classification models. The entire preprocessing procedure
was implemented using MNE-Python, a standard library
for neurophysiological signal analysis, thereby ensuring



consistency and
processing stages.

The raw EEG data consist of 22 EEG channels and 3
EOG channels. To maintain spatial consistency in the
model input, the EEG channel names and ordering were
standardized to a canonical 22-channel configuration
(Figure 1). The EOG channels were explicitly designated
with the eog channel type to facilitate the detection of
ocular artifacts. Common average reference (CAR) was
applied to all EEG signals, and a standard 10-20 system
montage was used to align electrode locations. These
referencing and montage settings provide a fundamental
stable comparison of relative potential

basis for
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reproducibility across

distributions across channels (Figure 2).

For frequency-domain preprocessing, notch filters at 50
Hz and 100 Hz were applied to suppress power-line noise,
along with an 8-30 Hz band-pass filter targeting
frequency bands predominantly associated with motor
rhythms.
attenuates low-frequency drift and high-frequency noise
while emphasizing neural activity in the p and  bands.
Identical filtering was applied to both EEG and EOG
channels, facilitating subsequent artifact separation during

imagery-related

later processing stages.
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Fig. 1 Epoch definition and tensor representation used as
model input. Each trial is segmented into a 4-
second window and represented as a fixed-size

tensor.

To reduce contamination caused by eye movements and
eye blinks, the preprocessing pipeline includes an
independent component analysis (ICA)-based artifact

removal procedure. ICA was trained on the EEG channels,
and ocular-related components were identified based on
their correlation with the EOG channels. These
components were subsequently removed to reconstruct
artifact-reduced EEG signals. The application of ICA was
controlled using a fixed random seed, ensuring that
preprocessing results were reproducible under identical
conditions.

To construct fixed-length, trial-wise input signals for
model training, event-based epoching was performed.
Each trial was defined to include a 0-4 s interval
following stimulus onset, and no baseline correction was
applied. The resulting epochs were labeled according to
their corresponding motor imagery classes, and epochs
generated from different sessions were merged into a
single data array using a consistent format. Both subject-
wise preprocessing outputs and the combined dataset were
stored, enabling flexible reuse under different
experimental configurations.

To ensure stable neural network training, z-score
normalization was applied to all epoch signals. The
normalized data were then reshaped into tensors of size
RV*1X22XT yhere N denotes the total number of trials,
22 represents the number of EEG channels, and T is the
number of temporal samples per epoch. The leading
singleton channel dimension was included to match the
input specifications of the subsequent PyTorch-based
generative and classification models. Class labels were
reindexed as integer values and normalized to the range
[0,3].

efcy ®FC1  ®FCZ  @FC2 grca

ocs #C3 #CL e gcs

ecP3 ®CPL z  OCP2 gcP4

L 121 N 1]

Fig. 2 EEG electrode mapping and spatial configuration.

Finally, the entire dataset was divided into training and
evaluation sets using a stratified split to preserve class
distribution. The split ratio and random seed were fixed to
ensure that identical training and evaluation datasets could
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be reproduced under the same preprocessing code and
configuration. This preprocessing and input construction
pipeline provides a consistent foundation for the
comparative analysis of the conditional diffusion—based
EEG channel restoration model and the motor imagery
classification model presented in the subsequent sections,
ensuring that both models operate under identical input
assumptions.

2.2. Conditional Diffusion—-Based EEG Channel
Restoration Model

In this study, a conditional diffusion-based generative
model is applied to the EEG channel restoration problem
in order to reconstruct multi-channel EEG signals from
low-channel observations. This task can be formulated as
a conditional inverse problem, where only a subset of
channels (MI-9) is observed, and the full 22-channel EEG
time series must be estimated. Under such conditions, a
probabilistic generative modeling approach is well suited
to progressively recover the missing spatial information.

Diffusion models construct a latent distribution by
gradually injecting Gaussian noise into the real data X
through a forward diffusion process until reaching X,
and subsequently recover the original distribution by
iteratively removing noise using a learned neural network
in the reverse process. In this work, the full 22-channel
EEG time series is defined as X¢ € R22xT

restoration is performed as a reverse diffusion process
conditioned on the observed subset of channels.

, and channel

To this end, we define an observed channel set C,pg
and a missing channel set €. Following common
practice in MI-based BCI settings, nine central channels
(MI-9) are selected as C,ps, wWhile the remaining 13
channels are designated as the restoration target Cigs-
The observed signals are embedded into the full channel
space to form a conditional input Xx.y,q, Where the true
EEG values are retained at the observed channel locations
and zeros are filled elsewhere. In addition, a binary mask
m € {0,1}22*T is defined to explicitly indicate channel
observability, taking a value of 1 at observed channel
locations and 0 otherwise.

The forward diffusion process is defined as
q(x; | x0) = N(x; \/EtXO' 1 -ay)D,

Where, {B.}_; denotes a linearly scheduled noise
variance, o, =1—B,, and @, = [[i-; &, . During

training, a noise sample € ~ N (0,I) is drawn at a
randomly selected time step x;.

The reverse process is implemented via a noise
prediction network €g(-), which explicitly incorporates
both the conditional input and the mask. Specifically, the
model input is constructed as

input = [x,, X.ona, m] € R®*T

corresponding to (i) the current noisy full-channel EEG
signal, (ii) the conditional signal containing only observed
channels, and (iii) the channel-wise observation mask
concatenated along the channel dimension. This
formulation enables the model to explicitly recognize
which channels are observed and which must be restored
during the denoising process.

The noise prediction network is designed as a one-
dimensional convolutional architecture that preserves
temporal resolution. To maintain temporal continuity of
the EEG time series, no downsampling or upsampling
operations are employed. Instead, expressive capacity is
achieved through multi-stage convolutional blocks with
residual connections. The diffusion time step t is
embedded using sinusoidal time embeddings and injected
into each residual block, allowing the model to learn
noise-level-dependent conditional denoising. The final
output is a noise estimate €z € R%%*T for all EEG
channels.

Training follows the standard DDPM objective,
minimizing the mean squared error (MSE) between the
true noise € and the predicted noise €g:

Lpppm = Exo,e,t[" €— @e(xt» Xcond M, t) ”%]

This loss is computed over all channels without
explicitly distinguishing observed and missing channels,
while the observed-channel information is implicitly
enforced through the conditional input and mask.

During inference, reverse diffusion is performed using
only the observed MI-9 channels to reconstruct the full 22-
channel EEG. The initial state xp is sampled from
Gaussian noise, and x,_q is computed at each reverse
diffusion step using the model predictions. At every step,
the values of the observed channels are forcibly replaced
with the true observed signals,

x99 =% VcECy,
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thereby ensuring that the conditional constraints are
always satisfied. As a result, the model performs
stochastic restoration exclusively on the missing channels

while preserving the observed channels without distortion.

Unlike pointwise prediction or simple interpolation,
this conditional diffusion-based channel restoration model
enables probabilistic reconstruction that jointly accounts
for temporal structure and inter-channel correlations.
Moreover, the same framework can be maintained even
when the number or locations of observed channels
change, simply by updating the conditional input and
mask. This flexibility makes the proposed approach
particularly well suited for BCI system design under
electrode minimization constraints.

2.3. Channel Restoration Performance Evaluation

The restoration accuracy of the conditional diffusion—
based EEG channel restoration model was analyzed at
both the full-channel level and at separated levels for
observed and unobserved channels. Performance was
primarily interpreted in terms of signal reconstruction
fidelity in the time domain and the preservation of inter-
channel correlation structures.

Quantitative evaluation was conducted using mean
squared error (MSE) and the Pearson correlation
coefficient. MSE measures absolute amplitude reconstruc
-tion error, while the correlation coefficient evaluates
temporal waveform similarity and phase alignment
independently of amplitude scale. All metrics were
averaged over trials and time samples and then computed
on a per-channel basis.

Across all 22 channels, the restoration achieved an
overall MSE of 0.0578 and an overall correlation of
0.9656. These results indicate that the temporal structure
of full EEG time series can be reconstructed with high
fidelity using only low-channel observations. For the MI-
9 channels used as conditional inputs, the restoration
yielded an MSE of 0.0 and a correlation of 1.0, as the
observed channel values were explicitly enforced at every
reverse diffusion step. This confirms that the conditional
diffusion process preserves observed signals without
distortion.

For the remaining 13 unobserved channels targeted for
restoration, the model achieved an average MSE of 0.0978
and an average correlation of 0.9418. Channel-wise
analysis revealed lower reconstruction error and higher
correlation in channels spatially adjacent to the central

motor regions (C and CP series), whereas channels in
portions of the parietal-occipital regions exhibited
relatively higher error. This spatial variation suggests that
the restoration reflects spatial and functional relationships
with observed channels rather than relying on simple
temporal interpolation.

Qualitative comparisons in the time domain further
demonstrate that the restored signals closely follow the
dominant oscillatory patterns and phase structures of the
original EEG signals (Figure 3). In a representative
single-trial waveform comparison for the FC4 channel,
the restored signal accurately reproduces overall
amplitude scaling and temporal dynamics, with only
limited discrepancies observed in localized high-
frequency components. These differences can be
interpreted as uncertainty inherent to the probabilistic
restoration process and do not substantially affect the
preservation of global rhythms and patterns.

Overall, the proposed conditional diffusion—-based EEG
channel restoration model achieves high correlation—
based reconstruction for unobserved channels while fully
preserving observed channels. These results demonstrate
the model’s effectiveness in mitigating spatial information
loss in low-channel EEG settings and indicate its
suitability as a reliable input signal foundation for
subsequent motor imagery classification and robot control
stages.

Trial 15, Channel: FC4

Fig. 3 Time-Domain comparison of original reconstructed
EEG signals.

3. Motor Imagery EEG Classification
Model

In this study, a state-of-the-art motor imagery (MI) EEG
classification model reported to achieve strong performan
-ce on standard MI-EEG benchmarks, including the BCIC
IV-2a dataset, was adopted from the literature.
Specifically, the classification model is based on the
TCFormer architecture proposed by Altaheri et al.'* This
model integrates multi-kernel convolution—based early
feature extraction, a Transformer encoder employing
grouped-query attention, and a temporal convolutional
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network (TCN) classification head with dilated causal
convolutions. TCFormer has demonstrated consistent
performance improvements over conventional CNN and
CNN-Transformer hybrid models across multiple public
MI-EEG datasets, including BCIC 1V-2a.

The focus of this work is not on architectural
modification or performance optimization of the
classification model itself, but rather on analyzing how
differences in input EEG representations affect motor
imagery classification performance and subsequent robot
control behavior. To this end, the classification model is
kept fixed, and both low-channel EEG inputs and channel-
restored EEG inputs are evaluated using the same
classifier for direct comparison. This experimental design
enables the effects of the channel restoration stage to be
isolated from classification model design factors and
provides a systematic basis for assessing how input signal
quality propagates through the end-to-end pipeline,
including the ROS2-based BCI robot control system.

3.1. Temporal Convolutional Transformer

TCFormer is designed as a hybrid architecture that
combines convolution-based local feature extraction with
Transformer-based global temporal context modeling,
taking into account the non-stationary nature and low
signal-to-noise ratio of EEG signals. The overall architect
-tural flow of the model is illustrated in Figure 4.

Fig. 4 Overall architecture of the TCFormer for motor
imagery EEG classification. Adapted from
Altaheri et al.

The input EEG time series X € R*T is first processed
by a multi-kernel convolutional block. In this block,
temporal kernels of different lengths are applied in parallel
to simultaneously capture neural activities at multiple
temporal scales, such as the p and p rhythms (Figure 5).
This multi-scale approach mitigates the limitations of
single-kernel convolutions and enables effective separate
-ion and emphasis of frequency band—specific information

that is critical for motor imagery EEG analysis.
V97

Fig. 5 Multi-kernel convolution block for multi-scale
temporal feature extraction. Adapted from
Altaheri et al.

The features extracted by the convolutional block are
subsequently passed to a Transformer encoder to model
global temporal dependencies. In TCFormer, grouped-
query attention (GQA) is employed instead of standard
multi-head self-attention. GQA is designed such that
multiple query heads share key—value representations,
thereby reducing computational complexity while
effectively capturing long-range temporal relationships
(Figure 6). In addition, rotary positional embedding is
applied to incorporate relative temporal relationships,
enabling natural preservation of temporal order that is
critical in EEG time-series modeling.

Multi-Head Attention Multi-Query Attention Grouped-Query Attention

Fig. 6 Comparison of multi-head, multi-query, and
grouped-query attention mechanisms. Adapted
from Altaheri et al.

The output of the Transformer encoder is combined
with convolution-based features and then fed into a TCN
classification head. The TCN employs dilated causal
convolutions to expand the receptive field along the
temporal dimension, integrating both short- and long-term
temporal patterns while preserving causality. Finally,
logits for the motor imagery classes are generated based
on the feature vector at the final time step.

In this manner, TCFormer sequentially integrates multi-
scale convolution, an efficient global attention mechanism,
and causal temporal decoding within a unified architecture.
In this study, the TCFormer architecture is used as the
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baseline classification model to analyze how changes in
input EEG representations affect classification performan
-ce and subsequent robot control stages.

3.2. Classification Performance Evaluation

Motor imagery (4-class) classification performance
was analyzed primarily using accuracy and confusion
matrices (Figure 7). Accuracy was computed as the
overall proportion of correctly classified samples in the
test set. The confusion matrix was presented in a row-
normalized (%) format with respect to the true class labels,
enabling interpretation of class-wise misclassification
patterns. During training, the training loss continuously
decreased with increasing epochs, while the test loss
exhibited a rapid initial drop followed by a gradual
decrease, eventually converging in a stable manner.
Correspondingly, classification accuracy improved
progressively, reaching a final test accuracy of 71.10%
with a test loss of 0.7561.

Class-wise accuracies (each class support = 130) were
observed as follows: Class 0: 62.31%, Class 1: 75.97%,
Class 2: 76.15%, and Class 3: 70.00%. Relatively higher
classification performance was observed for Class 1 and
Class 2. Analysis of the confusion matrix revealed that
Class 0 was more frequently misclassified as Class 1 and
Class 2, while Class 3 also exhibited a non-negligible
level of confusion with Class 2 and Class 1. This behavior
can be attributed to overlapping time—frequency
characteristics among certain motor imagery classes,
leading to closely formed decision boundaries.

Confusion Matrix (%)

100

True Label

0 1 2 3
Predicted Label

Fig. 7 Confusion matrix (%) of the 4-class motor imagery
EEG classification on the test set. Values are
normalized per true class.

The performance of the TCFormer-based classification
model used in this study can be interpreted through
comparison with existing motor imagery EEG
classification literature that also employs the BCIC IV-2a
dataset. For instance, Altaheri et al. reported classification
accuracies ranging from approximately 62—63% to 83—
85%, depending on the evaluation protocol, when
applying the TCFormer architecture to the same dataset.
In addition, numerous studies based on CNN, CNN-RNN,
and CNN-Transformer architectures commonly report
accuracies in the high-60% to low-70% range on BCIC
IV-2a."" Within this context, the 71.10% classification
accuracy achieved in this study represents a competitive
performance level without degradation compared to
existing classification models using the same dataset, and
can be regarded as providing a stable baseline
performance under standard MI-EEG classification
settings.

In summary, the TCFormer-based classifier achieved
approximately 71% accuracy for 4-class motor imagery
classification under the experimental conditions of this
study, placing it within a comparable or equivalent
performance range relative to prior literature on BCIC I'V-
2a. Rather than targeting further optimization of the
classifier itself, this model is used as a baseline to evaluate
the impact of input differences before and after channel
restoration, as well as to compare ROS2-based robot
control performance in subsequent sections.

4. ROS2-Based BCI Robot Control System
4.1. End-to-End System Overview

The ROS2-based BCI robot control system proposed in
this study is designed as an end-to-end pipeline that
directly links EEG-based user intent inference to robot
motion control, while incorporating a perception-based,
limited safety filter to ensure operational safety in real-
world environments. The core design principles of the
system are as follows: (i) user intent remains the central
element of control, (ii) no autonomous navigation
functionality is included, and (iii) minimal intervention is
performed only in hazardous situations.

The overall pipeline consists of three main stages. First,
in the EEG-based BCI layer, motor imagery classification
results are interpreted sequentially over time to generate
robot motion intent. The classified MI classes (LEFT,
RIGHT, FEET, TONGUE) are mapped to linear and
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angular velocities according to predefined rules, and the
resulting control commands are published to the
/emd vel bci topic. Commands generated at this stage
represent pure user intent and do not incorporate any
environmental information.

Second, in the environment perception layer, distance
information acquired from an onboard LiDAR sensor is
used to compute the minimum distance d,,;,, to frontal
obstacles. This value serves as an indicator of proximity
to the most critical obstacle in the robot’s current direction
of motion. No path planning or goal-following is
performed at this stage.

Third, in the intent—environment fusion layer, the BCI-
based control commands and LiDAR-based risk
indicators are combined to generate the final motion
commands. This functionality is implemented in the
env_filter node, which applies a rule-based policy defined
by predefined thresholds Dygqfe , Dtop, and a deceleration

coefficient k, as summarized below:

dmin > Dgqpe: €xecute user intent command

Dgtop < dpmin < Dgqpe: decelerate forward motion
only

dmin < Dstop
preserving rotational intent

stop forward motion while

This design ensures that the robot’s default behavior is
always governed by user intent, while limited intervention
is applied only in regions with collision risk. Accordingly,
the safety filter is not intended to replace or bypass
autonomous navigation algorithms, but rather to function
as a protective mechanism that maximally preserves user
intent.

The proposed system was validated in a Gazebo-based
simulation environment. To enable repeated experiments
under identical BCI command sequences and environment
-tal conditions, ROS2 parameter files (YAML) and a
rosbag-based recording and playback framework were
employed. This setup ensures reproducibility of end-to-
end control behavior and consistency of experimental
results.

4.2. ROS2 System Architecture

The proposed BCI robot control system is composed of
multiple functionally separated packages within a ROS2
workspace, each following a modular structure with
clearly defined responsibilities. This design aims to
enhance system scalability and ease of debugging, while

simultaneously ensuring the reproducibility of the
experimental results reported in this study.

The ROS2 workspace (ros2_ws/src) consists of five
main packages. The bci_interface package is responsible
for converting EEG-based user intent into robot control
commands. It temporally replays sequences of motor
imagery (MI) classes and publishes the corresponding
commands to the /cmd vel bei topic. Class-specific
velocity values, command durations, and related
parameters are defined in YAML configuration files,
enabling repeated reproduction of identical experimental
conditions.

The env_filter package implements the environment-
aware safety filter, which constitutes a core component of
the proposed system. This node simultaneously subscribes
to the /emd_vel bci topic and the LiDAR /scan topic. It
computes the minimum forward obstacle distance d,;;,
and generates the final /cmd_vel command according to a
predefined rule-based policy. All deceleration thresholds
and coefficients are managed as ROS2 parameters,
allowing control policy adjustments without modifying
source code.

The robot_description package contains URDF/Xacro
files that define the robot’s kinematic structure and sensor
frames. (Figure 8) In this study, a differential-drive
mobile robot configuration is assumed, and the Gazebo
diff-drive plugin is configured to directly consume the
/emd_vel topic. By omitting a separate low-level control
node, the control flow is simplified and the roles of the
BCI layer and the environment safety filter are clearly
delineated.

Fig. 8 RViz2 visualization of the BCI-controlled robot and
LiDAR perception.

The robot gazebo package manages the simulation
environment, including Gazebo world files, LiDAR
sensor configurations, and bridge settings for ROS-—
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Gazebo topic synchronization. (Figure 9) This setup
ensures stable availability of the /scan and /clock topics
within the ROS2 environment.

Fig. 9 Obstacle avoidance behavior in the Gazebo
simulation environment.

Finally, the robot bringup package serves as an
integration layer for launching the entire system through a
single launch file. This launch file simultaneously starts
the Gazebo simulation, the BCI node, and the
environment safety filter node, enabling the complete end-
to-end control pipeline to be reproduced with a single
command.

Fig. 10 ROS2 node—topic graph of the BCI robot control
system.

Overall, this ROS2 architecture concentrates control
logic within the BCI and safety filter layers, while
delegating robot actuation and sensor handling to standard
plugins. This approach achieves both structural simplicity
and experimental reproducibility and provides a solid
foundation for future extensions to real robotic platforms
or online EEG inputs while preserving the same system
interfaces.

5. Results

In this study, the end-to-end operation of the proposed
ROS2-based BCI robot control system was validated in a
simulation environment. The evaluation aims were
threefold: (i) to verify that EEG-based user intent is stably
transmitted to robot control commands, (ii) to confirm that
the safety filter performs limited intervention while
preserving user intent under hazardous environmental

conditions, and (iii)) to assess the reproducibility of
experimental results under identical conditions.

First, robot behavior was analyzed in an environment
without obstacles. Under this condition, the LIDAR-based
minimum distance d,;,consistently remained above the
safety threshold D, and the environment safety filter
did not perform any intervention. Simulation results
showed that the final control commands (/cmd vel)
numerically matched the BCI-based control commands
(/cmd_vel bci). Robot motions corresponding to motor
imagery classes—such as forward motion, left and right
rotation, and stopping—were reproduced in a temporally
stable and predictable manner. These results demonstrate
that the proposed system reflects user intent without
distortion when no environmental constraints are present.

In environments with static obstacles, the computed
dmin from the LiDAR sensor decreased as the robot
approached obstacles, triggering staged intervention by
the environment safety filter. In the range Dy, <
din < Dgy. , the forward velocity component was
reduced according to the deceleration coefficient k.
When dpiy < Dgop , forward motion was completely

halted. Throughout this process, the angular velocity
component was preserved, allowing user-intended
rotational motion to be continuously executed.
Consequently, the robot avoided collision risks while
preserving user intent to the greatest extent possible.
These results experimentally confirm that the safety filter
is designed to perform only interpretable, rule-based
interventions, rather than autonomous navigation or path
planning.

To verify system reproducibility, repeated experiments
were conducted under identical BCI command sequences
and environmental configurations. In all experiments,
velocity mappings and safety thresholds were fixed via
ROS2 parameter files (YAML), and rosbag-based
recording and playback were used to maintain identical
input conditions. As a result, the timing of deceleration
and stopping in the presence or absence of obstacles, as
well as the robot’s final positions, were consistently
reproduced across repeated trials. The temporal evolution
of control commands also remained identical. This
demonstrates that the proposed ROS2-based architecture
is well suited for explicit fixation of experimental
conditions and repeated validation.

Robot behavior and sensor perception results were
visually verified using RViz2 and the Gazebo simulation
environment. In RViz2, the robot model, coordinate
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frames, and LiDAR point clouds were used to confirm
sensor integration and frame alignment. In the Gazebo
environment, the robot’s actual motion—decelerating and
stopping while navigating an obstacle course—was
directly observed. These end-to-end operation results are
provided as supplementary video material, which records
simulations conducted under the same experimental
conditions described in this paper. The supplementary
video is publicly available via a GitHub repository, with
the repository address and access details provided in
Section 7 (Data availability).

6. Conclusion

This study proposed an end-to-end BCI robot
control system that mitigates information loss
inherent in low-channel EEG environments through
generative model-based channel restoration and
connects the restored signals to motor imagery
classification and ROS2-based robot control. Rather
than focusing on performance gains of individual
modules, the discussion emphasizes how system-
level stability and reproducibility are achieved under
the practical constraint of electrode minimization.

The conditional diffusion-based EEG channel
restoration preserves observed channels while
probabilistically compensating for the spatial
information of unobserved channels, thereby
maintaining the reliability of input signals for
subsequent classification. This suggests that channel
restoration should be interpreted not merely as a
preprocessing technique, but as a representation
recovery stage that alleviates structural information
loss caused by electrode reduction.

In the motor imagery classification stage, a
literature-based TCFormer model was adopted as a
fixed baseline, enabling isolation of the effects of
input EEG representation differences on overall
system behavior. The achieved 4-class classification
accuracy of approximately 71% falls within a
competitive range compared to prior studies using
the BCIC I'V-2a dataset and provides a stable referen
-ce point for subsequent robot control experiments.

Within the ROS2-based robot control system, user

intent was placed at the center of control, and an
intent-preserving safety filter was applied to perform
limited intervention only under LiDAR-detected
hazardous conditions. By preventing collisions while
maintaining rotational intent, this structure mitigates
the loss of user intent typically associated with safety
interventions. In addition, the modular ROS2 archit
-ecture and parameterized control policies jointly
ensure experimental reproducibility and system
scalability.

The limitations of this study include validation
based on offline EEG data, the assumption of static
obstacles, and evaluation confined to a simulation
environment. Nevertheless, by combining generative
model-based signal restoration under electrode
minimization constraints with intent-preserving
safety control, this work presents a practical system
design direction for extending non-invasive BCI
toward robotic control.

7.  Data availability

All EEG datasets used in this study are publicly
available. The BCIC IV-2a motor imagery EEG datasets
can be downloaded from the BCI Competition IV
repository: http://www.bbci.de/competition/iv/. Preproces
-sing scripts, proposed conditional diffusion model
(DDPM) and TCFormer models, and the ROS2 package
configuration files used for end-to-end BCI robot
control—including node implementations, launch files,
parameter YAML files, and robot simulation descriptions
are available at the following repository: https://github.co
m/YoungwoongYoun/EEG-robotics.

References

(1) Flesher, S. N., Downey, J. E., Weiss, J. M., Hughes, C.
L., Herrera, A. J., Tyler-Kabara, E. C., Boninger, M. L.,
Collinger, J. L., & Gaunt, R. A., 2021, “A Brain-
Computer Interface that Evokes Tactile Sensations
Improves Robotic Arm Control,” Science, Vol. 372, No.
6544, pp. 831-836.

(2) Ding. Y., Udompanyawit, C., Zhang, Y., & He. B.,
2025, “EEG-based brain-computer interface enables
real-time robotic hand control at individual finger level,”
Nature Communications, Vol. 16, No. 1, Article 5401,



http://www.bbci.de/competition/iv/
https://github.com/YoungwoongYoun/EEG_robotics
https://github.com/YoungwoongYoun/EEG_robotics
https://www.science.org/doi/10.1126/science.abd0380
https://www.science.org/doi/10.1126/science.abd0380
https://www.science.org/doi/10.1126/science.abd0380
https://www.science.org/doi/10.1126/science.abd0380
https://www.science.org/doi/10.1126/science.abd0380
https://www.science.org/doi/10.1126/science.abd0380
https://www.nature.com/articles/s41467-025-61064-x
https://www.nature.com/articles/s41467-025-61064-x
https://www.nature.com/articles/s41467-025-61064-x
https://www.nature.com/articles/s41467-025-61064-x

ROS2-Based End-to-End BCI Robot Control
with Generative EEG Channel Restoration and Intent Classification

pp. 1-2, DOI: 10.1038/s41467-025-61064-x.

(3) Edelman, B. J., Meng, J., Suma, D., Zurn, C.,
Nagarajan, E., Baxter, B. S., Cline, C. C., & He, B.,
2019, “Noninvasive neuroimaging enhances
continuous neural tracking for robotic device control,”
Science Robotics, Vol. 4, No. 31, eaaw6844.

(4) Willett, F. R., Avansino, D. T., Hochberg, L. R.,
Henderson, J. M., & Shenoy, K. V., 2021, “High-
performance  brain-to-text communication  via
handwriting,” Nature, Vol. 593, pp. 249254 .ssss

(5) Willsey, M. S.. Shah, N. P., Avansino, D. T., Hahn, N.
V., Jamiolkowski, R. M., Kamdar, F. B., Hochberg, L.
R., Willett, F. R., & Henderson, J. M., 2025, “A high-
performance brain—computer interface for finger
decoding and quadcopter game control in an individual
with paralysis,” Nature Medicine, Vol. 31, pp. 96—104.

(6) Karpowicz, B. M., Ali, Y. H., Wimalasena, L. N.,
Sedler, A. R., Keshtkaran, M. R., Bodkin, K. L., Ma, X.,
Rubin, D. B., Williams, Z. M., Cash, S. S., Hochberg,
L. R, Miller, L. E., & Pandarinath, C., 2025,

“Stabilizing  brain-computer interfaces through

alignment of latent dynamics,” Nature
Communications, Vol. 16, No. 1, Article 4662, pp. 1—
17.

(7) Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N.
& Ganguli, S., 2015, “Deep Unsupervised Learning
using Nonequilibrium Thermodynamics.” Proceedings
of the 32nd International Conference on Machine
Learning (ICML), PMLR Vol. 37, pp. 2256-2265: also
arXiv:1503.03585 [cs.LG].

(8) Yang, L.. Zhang, Z.. Song, Y., Hong, S., Xu, R., Zhao,
Y., Zhang, W., Cui, B., & Yang, M.-H., 2024,
“Diffusion Models: A Comprehensive Survey of
Methods and Applications,” ACM Computing Surveys,
Vol. 56, No. 4, Article 105, pp. 1-39.

(9) Shah, M., & Patel, N., 2023, “FNPG-NH: A
Reinforcement ILearning Framework for Flexible
Needle Path  Generation With  Nonholonomic
Constraints,” IEEE Robotics and Automation Letters,
Vol. 8 No. 99, pp. 5854-5861, DOI:
10.1109/LRA.2023.3300576.

(10) Luo, T.-j., & Cai, Z., 2025, “Diffusion models-based
motor imagery EEG sample augmentation via mixup
strategy,” Expert Systems with Applications, Vol. 262,
Atrticle 125585, pp. 1-18, DOI:
10.1016/j.eswa.2024.125585.

(11) Otarbay, Z., & Kyzyrkanov, A., 2025, “SVM-
enhanced attention mechanisms for motor imagery
EEG classification in brain-computer interfaces,”
Frontiers in Neuroscience, Vol. 19, Article 1622847, pp.
1-18, DOI: 10.3389/fnins.2025.1622847.



https://www.nature.com/articles/s41467-025-61064-x
https://www.science.org/doi/10.1126/scirobotics.aaw6844
https://www.science.org/doi/10.1126/scirobotics.aaw6844
https://www.science.org/doi/10.1126/scirobotics.aaw6844
https://www.science.org/doi/10.1126/scirobotics.aaw6844
https://www.science.org/doi/10.1126/scirobotics.aaw6844
https://www.nature.com/articles/s41586-021-03506-2
https://www.nature.com/articles/s41586-021-03506-2
https://www.nature.com/articles/s41586-021-03506-2
https://www.nature.com/articles/s41586-021-03506-2
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41591-024-03341-8
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://www.nature.com/articles/s41467-025-59652-y
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2209.00796
https://ieeexplore.ieee.org/document/10198298/
https://ieeexplore.ieee.org/document/10198298/
https://ieeexplore.ieee.org/document/10198298/
https://ieeexplore.ieee.org/document/10198298/
https://ieeexplore.ieee.org/document/10198298/
https://ieeexplore.ieee.org/document/10198298/
https://www.sciencedirect.com/science/article/pii/S0957417424024527
https://www.sciencedirect.com/science/article/pii/S0957417424024527
https://www.sciencedirect.com/science/article/pii/S0957417424024527
https://www.sciencedirect.com/science/article/pii/S0957417424024527
https://www.sciencedirect.com/science/article/pii/S0957417424024527
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1622847/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1622847/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1622847/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1622847/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1622847/full

