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1. Introduction 
 

Brain–computer interfaces (BCIs) provide an 

alternative pathway for individuals with severe motor 

impairments to control robotic arms, assistive devices, and 

mobile robots.(1) In particular, non-invasive EEG-based 

BCIs are attractive due to their clinical feasibility and 

accessibility; however, they inherently suffer from 

limitations in stable intent inference and long-term 

operation caused by low signal-to-noise ratio (SNR), 

inter-subject variability, and inter-session non-

stationarity.(2) Nevertheless, recent studies have demonstr 

-ated that continuous-level robot control is achievable 

using non-invasive signals alone, thereby accelerating the 

transition of BCI technologies toward real-world usage 

scenarios.(3) 

 

One of the most critical practical bottlenecks hindering 

the deployment of BCIs is the user burden associated with 

an increasing number of electrodes or channels. While 

high-density EEG provides richer spatial resolution, it 

significantly degrades usability in daily environments due 

to prolonged setup time, increased difficulty in electrode 

placement and alignment, contact impedance manageme 

-nt, and reduced mobility.(4) Consequently, approaches 

that can secure the information required for classification 

and control “with fewer electrodes” are essential. This 

challenge extends beyond signal processing optimization 

and directly translates into a system-level design problem 

aimed at improving user comfort and wearability. (5) 

 

Reducing the number of EEG channels enhances 

wearability but inevitably leads to the loss of spatial 

patterns—particularly inter-channel relationships—that 

are critical for motor imagery (MI) classification, 

resulting in degraded classification performance and 

control stability.(6) This issue is not merely a matter of 

model accuracy; when propagated to robotic control, 

accumulated errors may escalate into safety risks. 

Furthermore, while BCI-based robot control must 

primarily reflect user intent, real-world environments 

require concurrent sensor-based hazard assessment. This 

necessitates an explicit definition of the boundary between 

“preserving user intent” and “safety intervention.” 

 

The objective of this study is to ensure stability and 

reproducibility at the system level, including robotic 

control, under the premise of electrode minimization 

through low-channel EEG observation. To this end, we 

propose a framework that: (1) restores multi-channel EEG 

representations from low-channel observations using a 

generative model to compensate for missing spatial 

information; (2) estimates user intent through motor 

imagery classification based on the restored EEG signals; 

(3) converts the inferred intent into robot control 

commands within a ROS2-based modular architecture; 

and (4) applies a LiDAR-based safety filter that intervenes 
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Abstract: This study proposes a BCI robot control system that mitigates information loss in low-channel EEG-based BCI 

environments while reducing user burden by minimizing the number of electrodes, thereby enabling stable robot control. 

The proposed system takes MI-9 low-channel EEG signals from the BCI Competition IV Dataset 2a as input and restores 

full 22-channel EEG signals using a conditional diffusion-based generative model, compensating for the spatial neural 

information required for classification under constrained measurement conditions. Based on the restored EEG signals, 

motor imagery classification is performed, and the classification results are interpreted as user intent within a ROS2 

environment and translated into robot control commands, establishing a continuous end-to-end connection between BCI 

and robotic control. In addition, a LiDAR-based safety filter is applied to decelerate or stop the robot in hazardous forward 

situations, ensuring environmental safety while preserving user intent. Simulation experiments validate the 

reproducibility of the proposed system and its collision avoidance performance. 
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only by decelerating or stopping the robot in hazardous 

situations. Importantly, the safety filter is not designed to 

replace autonomous navigation but rather to preserve user 

intent by default while performing limited intervention 

exclusively in risk scenarios, thereby ensuring interpretabi 

-lity and experimental controllability. 

 

The main contributions of this work are summarized as 

follows: 

1. Channel restoration–based BCI pipeline for 

electrode minimization: Low-channel EEG signals 

(e.g., MI-9) are used as observations, while multi-

channel representations (e.g., 22 channels) are 

restored via a conditional generative model to 

enrich the input information for the classification 

stage. 

 

2. End-to-end integration of restoration, classification, 

and control: The entire processing chain—from 

EEG restoration and classification to ROS2-based 

control topics—is constructed in a modular manner 

to enhance reproducibility and extensibility. 

 

3. Intent-preserving safety intervention architecture: 

Final robot velocity commands prioritize user intent, 

while a LiDAR-based safety filter enforces 

deceleration or stopping only when environmental 

hazards are detected, achieving a balance between 

intent preservation and environmental safety. 

 

4. Simulation-based reproducibility validation 

framework: A reproducible experimental protocol is 

provided using Gazebo simulation and ROS2 

logging, ensuring identical robot behavior under 

identical inputs and parameters. 

 

By placing wearability constraints—specifically 

electrode count at the center of system design, this 

approach aligns with the broader trajectory of extending 

non-invasive BCIs toward robotic control while targeting 

practical usability improvements. Considering the widely 

recognized challenges of long-term stability and 

variability in BCI systems, the modular separation of 

restoration, classification, and safety control offers a 

favorable foundation for future extension to real-world, 

online EEG data. 

 

 

2. Diffusion Model–Based EEG Channel 

Restoration 
 

Diffusion-based generative models are formulated as 

probabilistic frameworks that generate samples through a 

forward diffusion process, in which the data distribution 

is gradually corrupted into Gaussian noise, and a reverse 

denoising process, in which the original data are 

reconstructed using a learned model.(7) Early diffusion 

probabilistic models were first systematically introduced 

from a nonequilibrium thermodynamics perspective, 

proposing the principle of “progressive noise injection and 

reverse-process learning,” and were later refined through 

neural network–based parameterization and simplification 

of training objectives.(8) 

 

In particular, denoising diffusion probabilistic models 

(DDPMs) implement the reverse diffusion process as 

iterative denoising steps and demonstrate high-quality 

generative performance through their connection to score 

matching, thereby accelerating the practical adoption of 

diffusion models. Subsequent advancements—including 

accelerated sampling techniques such as DDIM to reduce 

computational cost, model variants that improve 

generation quality, likelihood estimation, and sample 

efficiency, as well as guidance-based methods that control 

the quality–diversity trade-off in conditional generation—

have extended diffusion models beyond image synthesis 

to a wide range of conditional generation and restoration 

tasks.(9) 

 

More recently, the structural paradigm of “progressive 

restoration from noise” has been applied to time-series 

and biosignals. In this context, several studies have 

emerged that reformulate conditional restoration 

problems—such as channel interpolation and spatial 

super-resolution—in low signal-to-noise ratio and highly 

variable signals like EEG from a generative modeling 

perspective.(10) 

 

 

2.1. Preprocessing and Input Construction 

 

In this study, a consistent preprocessing pipeline was 

applied to the BCI Competition IV Dataset 2a 

(BCICIV_2a) to ensure stable training and reproducibility 

of the EEG channel restoration and motor imagery 

classification models. The objectives of preprocessing are 

threefold: (i) to improve the signal-to-noise ratio by 

removing noise and non-physiological artifacts, (ii) to 

construct a uniform input representation across all 

subjects and sessions, and (iii) to generate fixed-

dimensional input tensors required by the generative and 

classification models. The entire preprocessing procedure 

was implemented using MNE-Python, a standard library 

for neurophysiological signal analysis, thereby ensuring 
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consistency and reproducibility across all signal 

processing stages. 

 

The raw EEG data consist of 22 EEG channels and 3 

EOG channels. To maintain spatial consistency in the 

model input, the EEG channel names and ordering were 

standardized to a canonical 22-channel configuration 

(Figure 1). The EOG channels were explicitly designated 

with the eog channel type to facilitate the detection of 

ocular artifacts. Common average reference (CAR) was 

applied to all EEG signals, and a standard 10–20 system 

montage was used to align electrode locations. These 

referencing and montage settings provide a fundamental 

basis for stable comparison of relative potential 

distributions across channels (Figure 2). 

 

For frequency-domain preprocessing, notch filters at 50 

Hz and 100 Hz were applied to suppress power-line noise, 

along with an 8–30 Hz band-pass filter targeting 

frequency bands predominantly associated with motor 

imagery–related rhythms. This filtering strategy 

attenuates low-frequency drift and high-frequency noise 

while emphasizing neural activity in the μ and β bands. 

Identical filtering was applied to both EEG and EOG 

channels, facilitating subsequent artifact separation during 

later processing stages. 

 

 
 

Fig. 1 Epoch definition and tensor representation used as 
model input. Each trial is segmented into a 4-
second window and represented as a fixed-size 
tensor. 

 

To reduce contamination caused by eye movements and 

eye blinks, the preprocessing pipeline includes an 

independent component analysis (ICA)–based artifact 

removal procedure. ICA was trained on the EEG channels, 

and ocular-related components were identified based on 

their correlation with the EOG channels. These 

components were subsequently removed to reconstruct 

artifact-reduced EEG signals. The application of ICA was 

controlled using a fixed random seed, ensuring that 

preprocessing results were reproducible under identical 

conditions. 

 

To construct fixed-length, trial-wise input signals for 

model training, event-based epoching was performed. 

Each trial was defined to include a 0–4 s interval 

following stimulus onset, and no baseline correction was 

applied. The resulting epochs were labeled according to 

their corresponding motor imagery classes, and epochs 

generated from different sessions were merged into a 

single data array using a consistent format. Both subject-

wise preprocessing outputs and the combined dataset were 

stored, enabling flexible reuse under different 

experimental configurations. 

 

To ensure stable neural network training, z-score 

normalization was applied to all epoch signals. The 

normalized data were then reshaped into tensors of size  

𝑹𝑵×𝟏×𝟐𝟐×𝑻, where 𝑵 denotes the total number of trials, 

22 represents the number of EEG channels, and 𝑻 is the 

number of temporal samples per epoch. The leading 

singleton channel dimension was included to match the 

input specifications of the subsequent PyTorch-based 

generative and classification models. Class labels were 

reindexed as integer values and normalized to the range 

[0,3]. 

 

 
 

Fig. 2 EEG electrode mapping and spatial configuration. 

 

Finally, the entire dataset was divided into training and 

evaluation sets using a stratified split to preserve class 

distribution. The split ratio and random seed were fixed to 

ensure that identical training and evaluation datasets could 
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be reproduced under the same preprocessing code and 

configuration. This preprocessing and input construction 

pipeline provides a consistent foundation for the 

comparative analysis of the conditional diffusion–based 

EEG channel restoration model and the motor imagery 

classification model presented in the subsequent sections, 

ensuring that both models operate under identical input 

assumptions. 

 

2.2. Conditional Diffusion–Based EEG Channel 

Restoration Model 

 

In this study, a conditional diffusion-based generative 

model is applied to the EEG channel restoration problem 

in order to reconstruct multi-channel EEG signals from 

low-channel observations. This task can be formulated as 

a conditional inverse problem, where only a subset of 

channels (MI-9) is observed, and the full 22-channel EEG 

time series must be estimated. Under such conditions, a 

probabilistic generative modeling approach is well suited 

to progressively recover the missing spatial information. 

 

Diffusion models construct a latent distribution by 

gradually injecting Gaussian noise into the real data 𝒙𝟎 

through a forward diffusion process until reaching 𝒙𝑻 , 

and subsequently recover the original distribution by 

iteratively removing noise using a learned neural network 

in the reverse process. In this work, the full 22-channel 

EEG time series is defined as 𝒙𝟎 ∈ ℝ𝟐𝟐×𝑻, and channel 

restoration is performed as a reverse diffusion process 

conditioned on the observed subset of channels. 

 

To this end, we define an observed channel set 𝑪𝒐𝒃𝒔  

and a missing channel set 𝑪𝒎𝒊𝒔𝒔 . Following common 

practice in MI-based BCI settings, nine central channels 

(MI-9) are selected as 𝑪𝒐𝒃𝒔 , while the remaining 13 

channels are designated as the restoration target 𝑪𝒎𝒊𝒔𝒔 . 

The observed signals are embedded into the full channel 

space to form a conditional input 𝒙𝒄𝒐𝒏𝒅, where the true 

EEG values are retained at the observed channel locations 

and zeros are filled elsewhere. In addition, a binary mask 

𝒎 ∈ {𝟎, 𝟏}𝟐𝟐×𝑻 is defined to explicitly indicate channel 

observability, taking a value of 1 at observed channel 

locations and 0 otherwise. 

 

The forward diffusion process is defined as 

 

𝒒(𝒙𝒕 ∣ 𝒙𝟎) = 𝓝(𝒙𝒕; √𝜶̅𝒕𝒙𝟎,    (𝟏 − 𝜶̅𝒕)𝚰), 

 

Where, {𝜷𝒕}𝒕=𝟏
𝑻  denotes a linearly scheduled noise 

variance, 𝜶𝒕 = 𝟏 − 𝜷𝒕 , and 𝜶̅𝒕 = ∏ 𝜶𝒔
𝒕
𝒔=𝟏  . During 

training, a noise sample 𝝐 ∼ 𝓝(𝟎, 𝐈)  is drawn at a 

randomly selected time step 𝒙𝒕. 

 

The reverse process is implemented via a noise 

prediction network 𝝐𝜽(⋅) , which explicitly incorporates 

both the conditional input and the mask. Specifically, the 

model input is constructed as 

 

𝒊𝒏𝒑𝒖𝒕 = [𝒙𝒕,   𝒙𝒄𝒐𝒏𝒅,   𝒎] ∈ 𝑹𝟔𝟔×𝑻 

 

corresponding to (i) the current noisy full-channel EEG 

signal, (ii) the conditional signal containing only observed 

channels, and (iii) the channel-wise observation mask 

concatenated along the channel dimension. This 

formulation enables the model to explicitly recognize 

which channels are observed and which must be restored 

during the denoising process. 

 

The noise prediction network is designed as a one-

dimensional convolutional architecture that preserves 

temporal resolution. To maintain temporal continuity of 

the EEG time series, no downsampling or upsampling 

operations are employed. Instead, expressive capacity is 

achieved through multi-stage convolutional blocks with 

residual connections. The diffusion time step 𝒕  is 

embedded using sinusoidal time embeddings and injected 

into each residual block, allowing the model to learn 

noise-level–dependent conditional denoising. The final 

output is a noise estimate 𝝐̂𝜽 ∈ 𝑹𝟐𝟐×𝑻 for all EEG 

channels. 

 

Training follows the standard DDPM objective, 

minimizing the mean squared error (MSE) between the 

true noise 𝜺 and the predicted noise 𝝐̂𝜽: 

 

𝑳𝑫𝑫𝑷𝑴 = 𝑬𝒙𝟎,𝝐,𝒕[∥ 𝝐 − 𝝐̂𝜽(𝒙𝒕, 𝒙𝒄𝒐𝒏𝒅, 𝒎, 𝒕) ∥𝟐
𝟐]. 

 

This loss is computed over all channels without 

explicitly distinguishing observed and missing channels, 

while the observed-channel information is implicitly 

enforced through the conditional input and mask. 

 

During inference, reverse diffusion is performed using 

only the observed MI-9 channels to reconstruct the full 22-

channel EEG. The initial state 𝒙𝑻  is sampled from 

Gaussian noise, and 𝒙𝒕−𝟏  is computed at each reverse 

diffusion step using the model predictions. At every step, 

the values of the observed channels are forcibly replaced 

with the true observed signals, 

 

𝒙𝒕
(𝒄)

= 𝒙𝒐𝒃𝒔
(𝒄)

, ∀𝒄 ∈ 𝓒𝒐𝒃𝒔, 
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thereby ensuring that the conditional constraints are 

always satisfied. As a result, the model performs 

stochastic restoration exclusively on the missing channels 

while preserving the observed channels without distortion. 

 

Unlike pointwise prediction or simple interpolation, 

this conditional diffusion-based channel restoration model 

enables probabilistic reconstruction that jointly accounts 

for temporal structure and inter-channel correlations. 

Moreover, the same framework can be maintained even 

when the number or locations of observed channels 

change, simply by updating the conditional input and 

mask. This flexibility makes the proposed approach 

particularly well suited for BCI system design under 

electrode minimization constraints. 

 

2.3. Channel Restoration Performance Evaluation 

 

The restoration accuracy of the conditional diffusion–

based EEG channel restoration model was analyzed at 

both the full-channel level and at separated levels for 

observed and unobserved channels. Performance was 

primarily interpreted in terms of signal reconstruction 

fidelity in the time domain and the preservation of inter-

channel correlation structures. 

 

Quantitative evaluation was conducted using mean 

squared error (MSE) and the Pearson correlation 

coefficient. MSE measures absolute amplitude reconstruc 

-tion error, while the correlation coefficient evaluates 

temporal waveform similarity and phase alignment 

independently of amplitude scale. All metrics were 

averaged over trials and time samples and then computed 

on a per-channel basis. 

 

Across all 22 channels, the restoration achieved an 

overall MSE of 0.0578 and an overall correlation of 

0.9656. These results indicate that the temporal structure 

of full EEG time series can be reconstructed with high 

fidelity using only low-channel observations. For the MI-

9 channels used as conditional inputs, the restoration 

yielded an MSE of 0.0 and a correlation of 1.0, as the 

observed channel values were explicitly enforced at every 

reverse diffusion step. This confirms that the conditional 

diffusion process preserves observed signals without 

distortion. 

 

For the remaining 13 unobserved channels targeted for 

restoration, the model achieved an average MSE of 0.0978 

and an average correlation of 0.9418. Channel-wise 

analysis revealed lower reconstruction error and higher 

correlation in channels spatially adjacent to the central 

motor regions (C and CP series), whereas channels in 

portions of the parietal–occipital regions exhibited 

relatively higher error. This spatial variation suggests that 

the restoration reflects spatial and functional relationships 

with observed channels rather than relying on simple 

temporal interpolation. 

 

Qualitative comparisons in the time domain further 

demonstrate that the restored signals closely follow the 

dominant oscillatory patterns and phase structures of the 

original EEG signals (Figure 3). In a representative 

single-trial waveform comparison for the FC4 channel, 

the restored signal accurately reproduces overall 

amplitude scaling and temporal dynamics, with only 

limited discrepancies observed in localized high-

frequency components. These differences can be 

interpreted as uncertainty inherent to the probabilistic 

restoration process and do not substantially affect the 

preservation of global rhythms and patterns. 

 

Overall, the proposed conditional diffusion–based EEG 

channel restoration model achieves high correlation–

based reconstruction for unobserved channels while fully 

preserving observed channels. These results demonstrate 

the model’s effectiveness in mitigating spatial information 

loss in low-channel EEG settings and indicate its 

suitability as a reliable input signal foundation for 

subsequent motor imagery classification and robot control 

stages. 

 

 
 

Fig. 3 Time-Domain comparison of original reconstructed 
EEG signals. 

 

 

3. Motor Imagery EEG Classification 

Model 

 

In this study, a state-of-the-art motor imagery (MI) EEG 

classification model reported to achieve strong performan 

-ce on standard MI-EEG benchmarks, including the BCIC 

IV-2a dataset, was adopted from the literature. 

Specifically, the classification model is based on the 

TCFormer architecture proposed by Altaheri et al.¹¹ This 

model integrates multi-kernel convolution–based early 

feature extraction, a Transformer encoder employing 

grouped-query attention, and a temporal convolutional 
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network (TCN) classification head with dilated causal 

convolutions. TCFormer has demonstrated consistent 

performance improvements over conventional CNN and 

CNN–Transformer hybrid models across multiple public 

MI-EEG datasets, including BCIC IV-2a. 

 

The focus of this work is not on architectural 

modification or performance optimization of the 

classification model itself, but rather on analyzing how 

differences in input EEG representations affect motor 

imagery classification performance and subsequent robot 

control behavior. To this end, the classification model is 

kept fixed, and both low-channel EEG inputs and channel-

restored EEG inputs are evaluated using the same 

classifier for direct comparison. This experimental design 

enables the effects of the channel restoration stage to be 

isolated from classification model design factors and 

provides a systematic basis for assessing how input signal 

quality propagates through the end-to-end pipeline, 

including the ROS2-based BCI robot control system. 

 

3.1. Temporal Convolutional Transformer 

 

TCFormer is designed as a hybrid architecture that 

combines convolution-based local feature extraction with 

Transformer-based global temporal context modeling, 

taking into account the non-stationary nature and low 

signal-to-noise ratio of EEG signals. The overall architect 

-tural flow of the model is illustrated in Figure 4. 

 

 
 

Fig. 4 Overall architecture of the TCFormer for motor 
imagery EEG classification. Adapted from 
Altaheri et al. 

 

The input EEG time series 𝑿 ∈ 𝑹𝑪×𝑻 is first processed 

by a multi-kernel convolutional block. In this block, 

temporal kernels of different lengths are applied in parallel 

to simultaneously capture neural activities at multiple 

temporal scales, such as the μ and β rhythms (Figure 5). 

This multi-scale approach mitigates the limitations of 

single-kernel convolutions and enables effective separate 

-ion and emphasis of frequency band–specific information 

that is critical for motor imagery EEG analysis. 

 

 
 

Fig. 5 Multi-kernel convolution block for multi-scale 
temporal feature extraction. Adapted from 
Altaheri et al. 

 

The features extracted by the convolutional block are 

subsequently passed to a Transformer encoder to model 

global temporal dependencies. In TCFormer, grouped-

query attention (GQA) is employed instead of standard 

multi-head self-attention. GQA is designed such that 

multiple query heads share key–value representations, 

thereby reducing computational complexity while 

effectively capturing long-range temporal relationships 

(Figure 6). In addition, rotary positional embedding is 

applied to incorporate relative temporal relationships, 

enabling natural preservation of temporal order that is 

critical in EEG time-series modeling. 

 

 
 

Fig. 6 Comparison of multi-head, multi-query, and 
grouped-query attention mechanisms. Adapted 
from Altaheri et al. 

 

The output of the Transformer encoder is combined 

with convolution-based features and then fed into a TCN 

classification head. The TCN employs dilated causal 

convolutions to expand the receptive field along the 

temporal dimension, integrating both short- and long-term 

temporal patterns while preserving causality. Finally, 

logits for the motor imagery classes are generated based 

on the feature vector at the final time step. 

 

In this manner, TCFormer sequentially integrates multi-

scale convolution, an efficient global attention mechanism, 

and causal temporal decoding within a unified architecture. 

In this study, the TCFormer architecture is used as the 
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baseline classification model to analyze how changes in 

input EEG representations affect classification performan 

-ce and subsequent robot control stages. 

 

3.2. Classification Performance Evaluation 
 

Motor imagery (4-class) classification performance 

was analyzed primarily using accuracy and confusion 

matrices (Figure 7). Accuracy was computed as the 

overall proportion of correctly classified samples in the 

test set. The confusion matrix was presented in a row-

normalized (%) format with respect to the true class labels, 

enabling interpretation of class-wise misclassification 

patterns. During training, the training loss continuously 

decreased with increasing epochs, while the test loss 

exhibited a rapid initial drop followed by a gradual 

decrease, eventually converging in a stable manner. 

Correspondingly, classification accuracy improved 

progressively, reaching a final test accuracy of 71.10% 

with a test loss of 0.7561. 

 

Class-wise accuracies (each class support = 130) were 

observed as follows: Class 0: 62.31%, Class 1: 75.97%, 

Class 2: 76.15%, and Class 3: 70.00%. Relatively higher 

classification performance was observed for Class 1 and 

Class 2. Analysis of the confusion matrix revealed that 

Class 0 was more frequently misclassified as Class 1 and 

Class 2, while Class 3 also exhibited a non-negligible 

level of confusion with Class 2 and Class 1. This behavior 

can be attributed to overlapping time–frequency 

characteristics among certain motor imagery classes, 

leading to closely formed decision boundaries. 

 

 
Fig. 7 Confusion matrix (%) of the 4-class motor imagery 

EEG classification on the test set. Values are 
normalized per true class. 

 

The performance of the TCFormer-based classification 

model used in this study can be interpreted through 

comparison with existing motor imagery EEG 

classification literature that also employs the BCIC IV-2a 

dataset. For instance, Altaheri et al. reported classification 

accuracies ranging from approximately 62–63% to 83–

85%, depending on the evaluation protocol, when 

applying the TCFormer architecture to the same dataset. 

In addition, numerous studies based on CNN, CNN–RNN, 

and CNN–Transformer architectures commonly report 

accuracies in the high-60% to low-70% range on BCIC 

IV-2a.¹¹ Within this context, the 71.10% classification 

accuracy achieved in this study represents a competitive 

performance level without degradation compared to 

existing classification models using the same dataset, and 

can be regarded as providing a stable baseline 

performance under standard MI-EEG classification 

settings. 

 

In summary, the TCFormer-based classifier achieved 

approximately 71% accuracy for 4-class motor imagery 

classification under the experimental conditions of this 

study, placing it within a comparable or equivalent 

performance range relative to prior literature on BCIC IV-

2a. Rather than targeting further optimization of the 

classifier itself, this model is used as a baseline to evaluate 

the impact of input differences before and after channel 

restoration, as well as to compare ROS2-based robot 

control performance in subsequent sections. 

 

 

4. ROS2-Based BCI Robot Control System 

 

4.1. End-to-End System Overview 
 

The ROS2-based BCI robot control system proposed in 

this study is designed as an end-to-end pipeline that 

directly links EEG-based user intent inference to robot 

motion control, while incorporating a perception-based, 

limited safety filter to ensure operational safety in real-

world environments. The core design principles of the 

system are as follows: (i) user intent remains the central 

element of control, (ii) no autonomous navigation 

functionality is included, and (iii) minimal intervention is 

performed only in hazardous situations. 

 

The overall pipeline consists of three main stages. First, 

in the EEG-based BCI layer, motor imagery classification 

results are interpreted sequentially over time to generate 

robot motion intent. The classified MI classes (LEFT, 

RIGHT, FEET, TONGUE) are mapped to linear and 
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angular velocities according to predefined rules, and the 

resulting control commands are published to the 

/cmd_vel_bci topic. Commands generated at this stage 

represent pure user intent and do not incorporate any 

environmental information. 

 

Second, in the environment perception layer, distance 

information acquired from an onboard LiDAR sensor is 

used to compute the minimum distance 𝒅𝒎𝒊𝒏 to frontal 

obstacles. This value serves as an indicator of proximity 

to the most critical obstacle in the robot’s current direction 

of motion. No path planning or goal-following is 

performed at this stage. 

 

Third, in the intent–environment fusion layer, the BCI-

based control commands and LiDAR-based risk 

indicators are combined to generate the final motion 

commands. This functionality is implemented in the 

env_filter node, which applies a rule-based policy defined 

by predefined thresholds 𝑫𝒔𝒂𝒇𝒆,𝑫𝒔𝒕𝒐𝒑, and a deceleration 

coefficient 𝒌, as summarized below: 

 

 𝒅𝒎𝒊𝒏 > 𝑫𝒔𝒂𝒇𝒆: execute user intent command 

 𝑫𝒔𝒕𝒐𝒑 < 𝒅𝒎𝒊𝒏 ≤ 𝑫𝒔𝒂𝒇𝒆 : decelerate forward motion 

only 

 𝒅𝒎𝒊𝒏 ≤ 𝑫𝒔𝒕𝒐𝒑 : stop forward motion while 

preserving rotational intent 

 

This design ensures that the robot’s default behavior is 

always governed by user intent, while limited intervention 

is applied only in regions with collision risk. Accordingly, 

the safety filter is not intended to replace or bypass 

autonomous navigation algorithms, but rather to function 

as a protective mechanism that maximally preserves user 

intent. 

 

The proposed system was validated in a Gazebo-based 

simulation environment. To enable repeated experiments 

under identical BCI command sequences and environment 

-tal conditions, ROS2 parameter files (YAML) and a 

rosbag-based recording and playback framework were 

employed. This setup ensures reproducibility of end-to-

end control behavior and consistency of experimental 

results. 

 

4.2. ROS2 System Architecture 

 

The proposed BCI robot control system is composed of 

multiple functionally separated packages within a ROS2 

workspace, each following a modular structure with 

clearly defined responsibilities. This design aims to 

enhance system scalability and ease of debugging, while 

simultaneously ensuring the reproducibility of the 

experimental results reported in this study. 

 

The ROS2 workspace (ros2_ws/src) consists of five 

main packages. The bci_interface package is responsible 

for converting EEG-based user intent into robot control 

commands. It temporally replays sequences of motor 

imagery (MI) classes and publishes the corresponding 

commands to the /cmd_vel_bci topic. Class-specific 

velocity values, command durations, and related 

parameters are defined in YAML configuration files, 

enabling repeated reproduction of identical experimental 

conditions. 

 

The env_filter package implements the environment-

aware safety filter, which constitutes a core component of 

the proposed system. This node simultaneously subscribes 

to the /cmd_vel_bci topic and the LiDAR /scan topic. It 

computes the minimum forward obstacle distance 𝒅𝒎𝒊𝒏  

and generates the final /cmd_vel command according to a 

predefined rule-based policy. All deceleration thresholds 

and coefficients are managed as ROS2 parameters, 

allowing control policy adjustments without modifying 

source code. 

 

The robot_description package contains URDF/Xacro 

files that define the robot’s kinematic structure and sensor 

frames. (Figure 8) In this study, a differential-drive 

mobile robot configuration is assumed, and the Gazebo 

diff-drive plugin is configured to directly consume the 

/cmd_vel topic. By omitting a separate low-level control 

node, the control flow is simplified and the roles of the 

BCI layer and the environment safety filter are clearly 

delineated. 

 

 
 

Fig. 8 RViz2 visualization of the BCI-controlled robot and 
LiDAR perception. 

 

The robot_gazebo package manages the simulation 

environment, including Gazebo world files, LiDAR 

sensor configurations, and bridge settings for ROS–
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Gazebo topic synchronization. (Figure 9) This setup 

ensures stable availability of the /scan and /clock topics 

within the ROS2 environment. 

 

 
 

Fig. 9 Obstacle avoidance behavior in the Gazebo 
simulation environment. 

 

Finally, the robot_bringup package serves as an 

integration layer for launching the entire system through a 

single launch file. This launch file simultaneously starts 

the Gazebo simulation, the BCI node, and the 

environment safety filter node, enabling the complete end-

to-end control pipeline to be reproduced with a single 

command. 

 

 
 

Fig. 10 ROS2 node–topic graph of the BCI robot control 
system. 

 

Overall, this ROS2 architecture concentrates control 

logic within the BCI and safety filter layers, while 

delegating robot actuation and sensor handling to standard 

plugins. This approach achieves both structural simplicity 

and experimental reproducibility and provides a solid 

foundation for future extensions to real robotic platforms 

or online EEG inputs while preserving the same system 

interfaces. 

 

 

5. Results 

 

In this study, the end-to-end operation of the proposed 

ROS2-based BCI robot control system was validated in a 

simulation environment. The evaluation aims were 

threefold: (i) to verify that EEG-based user intent is stably 

transmitted to robot control commands, (ⅱ) to confirm that 

the safety filter performs limited intervention while 

preserving user intent under hazardous environmental 

conditions, and (ⅲ) to assess the reproducibility of 

experimental results under identical conditions. 

 

First, robot behavior was analyzed in an environment 

without obstacles. Under this condition, the LiDAR-based 

minimum distance 𝒅𝐦𝐢𝐧consistently remained above the 

safety threshold 𝑫safe, and the environment safety filter 

did not perform any intervention. Simulation results 

showed that the final control commands (/cmd_vel) 

numerically matched the BCI-based control commands 

(/cmd_vel_bci). Robot motions corresponding to motor 

imagery classes—such as forward motion, left and right 

rotation, and stopping—were reproduced in a temporally 

stable and predictable manner. These results demonstrate 

that the proposed system reflects user intent without 

distortion when no environmental constraints are present. 

 

In environments with static obstacles, the computed 

𝒅𝐦𝐢𝐧 from the LiDAR sensor decreased as the robot 

approached obstacles, triggering staged intervention by 

the environment safety filter. In the range 𝑫stop <

𝒅𝐦𝐢𝐧 ≤ 𝑫safe , the forward velocity component was 

reduced according to the deceleration coefficient 𝒌 . 

When 𝒅𝐦𝐢𝐧 ≤ 𝑫stop , forward motion was completely 

halted. Throughout this process, the angular velocity 

component was preserved, allowing user-intended 

rotational motion to be continuously executed. 

Consequently, the robot avoided collision risks while 

preserving user intent to the greatest extent possible. 

These results experimentally confirm that the safety filter 

is designed to perform only interpretable, rule-based 

interventions, rather than autonomous navigation or path 

planning. 

 

To verify system reproducibility, repeated experiments 

were conducted under identical BCI command sequences 

and environmental configurations. In all experiments, 

velocity mappings and safety thresholds were fixed via 

ROS2 parameter files (YAML), and rosbag-based 

recording and playback were used to maintain identical 

input conditions. As a result, the timing of deceleration 

and stopping in the presence or absence of obstacles, as 

well as the robot’s final positions, were consistently 

reproduced across repeated trials. The temporal evolution 

of control commands also remained identical. This 

demonstrates that the proposed ROS2-based architecture 

is well suited for explicit fixation of experimental 

conditions and repeated validation. 

 

Robot behavior and sensor perception results were 

visually verified using RViz2 and the Gazebo simulation 

environment. In RViz2, the robot model, coordinate 
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frames, and LiDAR point clouds were used to confirm 

sensor integration and frame alignment. In the Gazebo 

environment, the robot’s actual motion—decelerating and 

stopping while navigating an obstacle course—was 

directly observed. These end-to-end operation results are 

provided as supplementary video material, which records 

simulations conducted under the same experimental 

conditions described in this paper. The supplementary 

video is publicly available via a GitHub repository, with 

the repository address and access details provided in 

Section 7 (Data availability). 

 

 

6. Conclusion 

 

This study proposed an end-to-end BCI robot 

control system that mitigates information loss 

inherent in low-channel EEG environments through 

generative model–based channel restoration and 

connects the restored signals to motor imagery 

classification and ROS2-based robot control. Rather 

than focusing on performance gains of individual 

modules, the discussion emphasizes how system-

level stability and reproducibility are achieved under 

the practical constraint of electrode minimization. 

 

The conditional diffusion–based EEG channel 

restoration preserves observed channels while 

probabilistically compensating for the spatial 

information of unobserved channels, thereby 

maintaining the reliability of input signals for 

subsequent classification. This suggests that channel 

restoration should be interpreted not merely as a 

preprocessing technique, but as a representation 

recovery stage that alleviates structural information 

loss caused by electrode reduction. 

 

In the motor imagery classification stage, a 

literature-based TCFormer model was adopted as a 

fixed baseline, enabling isolation of the effects of 

input EEG representation differences on overall 

system behavior. The achieved 4-class classification 

accuracy of approximately 71% falls within a 

competitive range compared to prior studies using 

the BCIC IV-2a dataset and provides a stable referen 

-ce point for subsequent robot control experiments. 

 

Within the ROS2-based robot control system, user 

intent was placed at the center of control, and an 

intent-preserving safety filter was applied to perform 

limited intervention only under LiDAR-detected 

hazardous conditions. By preventing collisions while 

maintaining rotational intent, this structure mitigates 

the loss of user intent typically associated with safety 

interventions. In addition, the modular ROS2 archit 

-ecture and parameterized control policies jointly 

ensure experimental reproducibility and system 

scalability. 

 

The limitations of this study include validation 

based on offline EEG data, the assumption of static 

obstacles, and evaluation confined to a simulation 

environment. Nevertheless, by combining generative 

model–based signal restoration under electrode 

minimization constraints with intent-preserving 

safety control, this work presents a practical system 

design direction for extending non-invasive BCI 

toward robotic control. 

 

 

7.  Data availability 

 

All EEG datasets used in this study are publicly 

available. The BCIC IV-2a motor imagery EEG datasets 

can be downloaded from the BCI Competition IV 

repository: http://www.bbci.de/competition/iv/. Preproces 

-sing scripts, proposed conditional diffusion model 

(DDPM) and TCFormer models, and the ROS2 package 

configuration files used for end-to-end BCI robot 

control—including node implementations, launch files, 

parameter YAML files, and robot simulation descriptions 

are available at the following repository: https://github.co 

m/YoungwoongYoun/EEG-robotics. 
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