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Fig. 1 Epoch definition and tensor representation used as
model input. Each trial is segmented into a 4-
second window and represented as a fixed-size

tensor.
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Fig. 4 Overall architecture of the TCFormer for motor
imagery EEG classification. Adapted from
Altaheri et al.
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Fig. 5 Multi-kernel convolution block for multi-scale
temporal feature extraction. Adapted from
Altaheri et al.
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Fig. 7 Confusion matrix (%) of the 4-class motor imagery
EEG classification on the test set. Values are
normalized per true class.
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