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1. 서론 

 

뇌–컴퓨터 인터페이스(BCI)는 중증 운동장애 

환자에게 로봇 팔·보조기기·이동로봇을 제어할 

수 있는 대안적 경로를 제공한다.(1) 특히 비침습 

EEG 기반 BCI 는 임상 적용 가능성과 접근성 측

면에서 매력적이지만, 신호 대 잡음비(SNR), 개

인차, 세션 간 변동성으로 인해 안정적인 의도 추

론과 장시간 운용에 본질적 제약이 존재한다.(2) 

그럼에도 최근 연구들은 비침습 신호만으로도 연

속 제어 수준의 로봇 제어가 가능함을 보이며, 실

제 사용 시나리오로의 확장을 촉진하고 있다.(3) 

 

 한편 BCI 의 실용화를 가로막는 현실적 병목 중 

하나는 전극/채널 수 증가에 따른 사용자 부담이

다. 다채널 EEG 는 공간 해상도를 제공하지만, 

착용 시간 증가, 장착·정렬 난이도, 접촉 임피던

스 관리, 이동성 저하 등으로 인해 일상 환경에서

의 사용성이 급격히 떨어진다.(4) 따라서 “적은 

전극으로도” 분류와 제어에 필요한 정보를 확보

하는 접근이 중요하며, 이는 단순한 신호처리 최

적화가 아니라 사용자 편의(착용성)를 직접적으로 

개선하는 시스템 설계 문제로 연결된다.(5) 

 

 

 소수채널 EEG 로 전극 수를 줄이면 착용성은 향

상되지만, 동시에 운동상상(MI) 분류에 중요한 

공간적 패턴(채널 간 관계)이 손실되어 분류 성능 

및 제어 안정성이 저하될 수 있다.(6) 이 문제는 

단일 모델의 정확도 문제에 그치지 않고, 로봇 제

어로 연결될 때 누적 오차가 안전 이슈로 확장될 

수 있다. 또한 BCI 로봇 제어는 사용자의 의도를 

반영해야 하지만, 실제 환경에서는 센서 기반 위

험 상황 판단이 동반되어야 하며, 이를 위해 “사

용자 의도 유지”와 “안전 개입”의 경계가 명시

적으로 정의될 필요가 있다. 

 

 본 연구의 목표는 전극 수 최소화(소수채널 관

측)를 전제로 하면서도, 로봇 제어까지 포함한 시

스템 수준에서 안정성과 재현성을 확보하는 것이

다. 이를 위해 (1) 소수채널 관측으로부터 다채널 

EEG 를 생성 모델로 복원하여 공간 정보를 보완

하고, (2) 복원된 EEG 를 입력으로 운동상상 분

류 모델을 통해 사용자의 의도를 추정하며, (3) 

ROS2 기반 모듈형 아키텍처로 의도 신호를 제어 

명령으로 변환하고, (4) LiDAR 기반 안전 필터로 

위험 상황에서만 감속·정지 개입을 수행한다. 이

때 안전 필터는 자율주행을 대체하는 기능이 아니

라, 사용자 의도를 기본으로 두되 위험 구간에서
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초록: 본 연구는 소수채널 EEG 기반 BCI 환경에서 발생하는 정보 손실 문제를 완화하고, 전극 수를 

최소화하여 사용자 착용 부담을 줄이면서도 안정적인 로봇 제어를 가능하게 하는 BCI 로봇 제어 시스

템을 제안한다. 제안 시스템은 BCI Competition IV Dataset 2a 의 MI-9 소수채널 EEG 를 입력으로 하여, 조

건부 확산 생성모델을 통해 22 채널 EEG 를 복원함으로써 제한된 측정 환경에서도 분류에 필요한 공간

적 신경 정보를 보완한다. 복원된 EEG 신호를 기반으로 운동상상 분류를 수행하고, 분류 결과를 ROS2 

환경에서 사용자 의도로 해석하여 로봇 제어 명령으로 변환함으로써 BCI 와 로봇 제어 간의 연속적인 

연결을 구현한다. 또한 LiDAR 기반 안전 필터를 적용해 로봇 전방 위험 상황에서 감속 또는 정지 동작

을 수행함으로써 사용자 의도를 유지하면서 환경 안전성을 확보한다. 시뮬레이션 실험을 통해 제안 시

스템의 재현성과 충돌 회피 성능을 검증하였다. 



윤영웅 

 

2 

만 개입하는 제한적 정책으로 설계하여 해석 가능

성과 실험 제어 가능성을 확보한다. 

 

 본 연구는 다음의 기여를 제시한다. 

1. 전극 최소화를 목표로 한 채널 복원 기반 

BCI 파이프라인: 소수채널(예: MI-9) EEG 를 

관측 입력으로 사용하되, 조건부 생성 모델

을 통해 다채널(예: 22 채널) 표현을 복원하

여 분류 단계의 입력 정보를 보완한다. 

 

2. 복원–분류–제어의 end-to-end 시스템 통합: 

EEG 처리(복원·분류) 결과가 ROS2 에서 제

어 토픽으로 연결되는 전체 체인을 모듈형으

로 구성하여 재현성과 확장성을 높인다. 

 

3. 의도 보존형 안전 개입 구조: 로봇의 최종 

속도 명령은 사용자 의도를 우선하되, 

LiDAR 기반 위험 판단 시에만 감속·정지하

는 안전 필터를 적용하여 “사용자 의도 유

지”와 “환경 안전”을 양립시키는 구조를 

제시한다. 

 

4. 시뮬레이션 기반 재현성 검증 프레임: 

Gazebo 및 ROS2 로깅 기반으로 동일 입력과 

파라미터에서 동일 동작이 재현되는 실험 프

로토콜을 제공한다. 

 

 이러한 접근은 비침습 BCI 가 로봇 제어로 확장

되는 흐름과 궤를 같이 하면서, 실사용 관점에서 

중요한 착용성 제약(전극 수)을 시스템 설계의 중

심에 두어 실용적 진전을 목표로 한다. 한 BCI 

분야 전반에서 강조되는 “장기 안정성·변동성 

대응” 이슈를 고려할 때, 복원–분류–안전 제어를 

분리 가능한 모듈로 구성하는 것은 향후 실제 데

이터(온라인 EEG)로의 확장에도 유리한 출발점이 

된다. 

 

 

2. Diffusion Model 기반 EEG 채널 복원 

 

확산(diffusion) 기반 생성모델은 데이터 분포를 

점진적으로 가우시안 노이즈로 붕괴시키는 정방향 

확산 과정과, 이를 학습된 모델로 되돌리는 역방

향 복원(denoising) 과정을 통해 샘플을 생성하는 

확률적 프레임워크로 정립되었다.(7) 초기 확산 확

률모형은 비평형 열역학 관점에서 “점진적 노이

즈 주입–역과정 학습”을 제안하며 최초로 체계화

되었고, 이후 신경망 기반 매개변수화와 학습 목

표의 단순화가 진행되었다.(8) 특히 DDPM 은 역확

산을 반복적 denoising 으로 구현하고, score matching

과의 연결을 통해 고품질 생성 성능을 보이며 확

산모델의 실용화를 촉진하였다. 샘플링 비용을 줄

이기 위한 DDIM 과 같은 가속화 기법, 품질·우

도·샘플 효율을 개선하는 후속 변형, 그리고 

conditional generation 에서 품질–다양성 트레이드오

프를 제어하는 guidance 계열 기법이 제안되면서 

확산모델은 이미지 생성뿐 아니라 다양한 조건부 

생성/복원 문제로 확장되었다.(9) 최근에는 이러한 

“노이즈로부터의 점진적 복원”이라는 구조가 시

계열 및 생체신호에도 적용되며, EEG와 같은 저신

호대잡음·고변동 신호에서 조건부 복원(예: 채널 

보간/공간 초해상도) 문제를 생성적 관점으로 재

정식화하는 연구들이 등장하고 있다.(10) 

 

2.1. 전처리 및 입력구성 

 

본 연구에서는 BCI Competition IV Dataset 

2a(BCICIV_2a)를 대상으로 EEG 채널 복원 및 운

동상상 분류 모델의 안정적인 학습과 재현성을 확

보하기 위해, 원시 EEG 신호에 대해 일관된 전처

리 파이프라인을 적용하였다. 전처리의 목적은 (i) 

잡음 및 비생리적 아티팩트를 제거하여 신호 대 

잡음비를 개선하고, (ii) 모든 피험자와 세션에 대

해 동일한 입력 표현을 구성하며, (iii) 생성 모델과 

분류 모델이 요구하는 고정 차원의 입력 텐서를 

생성하는 데 있다. 이러한 전처리 전 과정은 신경

생리 신호 분석을 위한 표준 라이브러리인 MNE-

Python 을 기반으로 구현되었으며, 신호 처리 단계

의 일관성과 재현성을 확보하였다. 

 

원시 EEG 는 22 개의 EEG 채널과 3 개의 EOG 

채널로 구성되며, 모델 입력의 공간적 일관성을 

유지하기 위해 EEG 채널의 이름과 순서를 표준 

22 채널 배열로 통일하였다. (Figure 1) EOG 채널은 

안구 운동 성분 탐지를 위해 채널 타입을 eog 로 

지정하였다. 모든 EEG 신호에는 공통 평균 참조

(Common Average Reference)를 적용하였고, 전극 위

치 정합을 위해 표준 10–20 계열 몽타주를 적용하

였다. 이러한 참조 및 몽타주 설정은 채널 간 상

대적 전위 분포를 안정적으로 비교하기 위한 기본 

조건으로 사용되었다. (Figure 2) 

 

주파수 영역 전처리로는 전원 노이즈 제거를 위
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한 50 Hz 및 100 Hz 노치 필터와, 운동상상 관련 

리듬이 주로 분포하는 대역을 고려한 8–30 Hz 대

역통과 필터를 적용하였다. 이를 통해 저주파 드

리프트와 고주파 잡음을 억제하고, μ 및 β 대역 중

심의 신경 활동을 강조하였다. 필터링은 EEG 와 

EOG 채널에 동일하게 적용되어, 이후 아티팩트 

제거 단계에서의 성분 분리를 용이하게 하였다. 

 

 
 

Fig. 1 Epoch definition and tensor representation used as 
model input. Each trial is segmented into a 4-
second window and represented as a fixed-size 
tensor. 

 

안구 운동 및 눈깜박임에 의한 혼입을 줄이기 

위해, 전처리 파이프라인에는 독립성분분석(ICA) 

기반 아티팩트 제거 절차를 포함하였다. ICA 는 

EEG 채널로부터 학습되며, EOG 채널과의 상관을 

기준으로 안구 관련 성분을 식별한 뒤 해당 성분

을 제거하여 신호를 재구성하였다. ICA 적용 여부

는 고정된 랜덤 시드를 사용하여 제어하였으며, 

동일 조건에서 전처리 결과가 재현되도록 설정하

였다. 

 

모델 입력을 시도(trial) 단위의 고정 길이 신호

로 구성하기 위해, 이벤트 기반 에포킹을 수행하

였다. 각 시도는 자극 이후 0–4 s 구간을 포함하도

록 정의하였으며, 베이스라인 보정은 적용하지 않

았다. 생성된 에포크는 운동상상 클래스에 따라 

라벨이 부여되었고, 서로 다른 세션에서 생성된 

에포크들은 동일한 형식으로 병합되어 단일 데이

터 배열로 구성되었다. 이 과정에서 피험자별 전

처리 결과와 전체 결합 결과를 모두 저장하여, 이

후 실험 설정에 따라 유연하게 활용할 수 있도록 

하였다. 

 

신경망 학습의 안정성을 확보하기 위해, 모든 

에포크 신호에 대해 z-score 정규화를 적용하였다. 

정규화된 데이터는 𝑹𝑵×𝟏×𝟐𝟐×𝑻  형태의 텐서로 변환

되었으며, 여기서 𝑵은 전체 시도 수, 22는 EEG 채

널 수, 𝑻는 에포크 내 시간 샘플 수를 의미한다. 

앞의 단일 채널 차원은 이후 PyTorch 기반 생성 

모델 및 분류 모델의 입력 규격에 맞추기 위한 구

성이다. 클래스 라벨은 정수 인덱스로 재정의되어  

[0,3] 범위로 정규화되었다. 

 

 
 

Fig. 2 EEG electrode mapping and spatial configuration. 

 

마지막으로 전체 데이터는 클래스 분포를 유지

하도록 계층적 분할(stratified split)을 적용하여 학

습 세트와 평가 세트로 분리하였다. 분할 비율과 

랜덤 시드는 고정하여, 동일한 전처리 코드와 설

정에서 동일한 학습·평가 데이터 구성이 재현되

도록 하였다. 이러한 전처리 및 입력 구성은 이후 

절에서 제시하는 조건부 확산 기반 EEG 채널 복

원 모델과 운동상상 분류 모델이 동일한 입력 가

정하에서 비교·분석될 수 있도록 하는 기반을 제

공한다. 

 

2.2. 조건부 확산 기반 EEG 채널 복원 모델 

 

본 연구에서는 소수채널 EEG 관측으로부터 다

채널 EEG 를 복원하기 위해, 조건부 확산(diffusion) 

기반 생성 모델을 채널 복원 문제에 적용한다. 본 

문제는 관측된 일부 채널(MI-9)만이 주어졌을 때, 

전체 22 채널 EEG 시계열을 추정하는 조건부 역

문제(conditional inverse problem)로 정의할 수 있으

며, 확률적 생성 모델을 통해 누락된 공간 정보를 
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점진적으로 복원하는 접근이 적합하다. 

 

확산 모델은 정방향 확산 과정에서 실제 데이

터 𝒙𝟎에 점진적으로 가우시안 노이즈를 주입하여 

𝒙𝑻에 이르는 잠재 분포를 구성하고, 역방향 과정

에서는 학습된 신경망을 이용해 노이즈를 단계적

으로 제거함으로써 원 분포를 복원한다. 본 연구

에서는 전체 22 채널 EEG 시계열을 𝑥𝟎 ∈ ℝ22×𝑇로 

정의하며, 채널 복원은 “관측된 일부 채널을 조

건으로 둔 상태에서의 역확산 과정”으로 수행된

다. 
 

이를 위해 관측 채널 집합 𝑪𝒐𝒃𝒔와 누락 채널 집

합 𝑪𝒎𝒊𝒔𝒔를 정의한다. 본 연구에서는 MI 기반 BCI 

환경에서 널리 사용되는 9 개 중심 채널(MI-9)을 

𝑪𝒐𝒃𝒔로 설정하고, 나머지 13 개 채널을 복원 대상 

𝑪𝒎𝒊𝒔𝒔로 두었다. 관측 신호는 전체 채널 공간으로 

임베딩되어, 관측 채널 위치에는 실제 EEG 값을 

유지하고 나머지 위치에는 0 을 채운 조건 입력 

𝒙𝒄𝒐𝒏𝒅로 구성된다. 동시에 관측 여부를 명시적으로 

전달하기 위해 동일한 크기의 이진 마스크 𝒎 ∈

{𝟎, 𝟏}𝟐𝟐×𝑻를 정의하며, 이는 관측 채널 위치에서 1, 

그 외 위치에서 0 을 갖는다. 

 

정방향 확산 과정은 다음과 같이 정의된다. 

 

𝒒(𝒙𝒕 ∣ 𝒙𝟎) = 𝓝(𝒙𝒕; √𝜶̅𝒕𝒙𝟎,    (𝟏 − 𝜶̅𝒕)𝚰), 

 

여기서 {𝜷𝒕}𝒕=𝟏
𝑻 는 선형 스케줄로 정의된 노이즈 

분산이며, 𝜶𝒕 = 𝟏 − 𝜷𝒕 , 𝜶̅𝒕 = ∏ 𝜶𝒔
𝒕
𝒔=𝟏 이다. 학습 시

에는 임의의 시간 단계 𝒕에서 노이즈 𝝐 ∼ 𝓝(𝟎, 𝐈)

를 샘플링하여 𝒙_𝒕를 구성한다. 

 

역방향 과정은 노이즈 예측 네트워크 𝝐𝜽(⋅)를 통

해 구현되며, 본 연구에서는 조건부 입력과 마스

크를 명시적으로 결합한 구조를 사용한다. 구체적

으로 모델 입력은 

 

𝒊𝒏𝒑𝒖𝒕 = [𝒙𝒕,   𝒙𝒄𝒐𝒏𝒅,   𝒎] ∈ 𝑹𝟔𝟔×𝑻 

 

로 구성되며, 이는 (i) 현재 노이즈 상태의 전체 

EEG, (ii) 관측 채널만 유지된 조건 신호, (iii) 채널 

관측 마스크를 채널 축 방향으로 결합한 형태이다. 

이를 통해 모델은 “어디가 관측되었고 어디가 복

원 대상인지”를 명시적으로 인식한 상태에서 노

이즈 제거를 수행할 수 있다. 

 

노이즈 예측 네트워크는 시간 해상도를 보존하는 

1 차원 합성곱 기반 구조로 설계되었다. 시간 축을 

따라 EEG 시계열의 연속성을 유지하기 위해 다운

샘플링이나 업샘플링은 사용하지 않았으며, 잔차 

연결(residual connection)을 포함한 다단 합성곱 블

록을 통해 표현력을 확보하였다. 확산 시간 단계  

𝒕는 사인–코사인 기반의 sinusoidal time embedding

으로 임베딩되어 각 잔차 블록에 주입되며, 이를 

통해 모델은 노이즈 수준에 따른 조건부 denoising

을 학습한다. 최종 출력은 22 채널 전체에 대한 노

이즈 예측 𝝐̂𝜽 ∈ 𝑹𝟐𝟐×𝑻이다. 

 

학습은 DDPM 의 표준 목적함수에 따라, 실제 노

이즈 𝝐과 모델이 예측한 노이즈 𝝐̂𝜽간의 평균제곱

오차(MSE)를 최소화하는 방식으로 수행된다. 

 

𝑳𝑫𝑫𝑷𝑴 = 𝑬𝒙𝟎,𝝐,𝒕[∥ 𝝐 − 𝝐̂𝜽(𝒙𝒕, 𝒙𝒄𝒐𝒏𝒅,𝒎, 𝒕) ∥𝟐
𝟐]. 

 

이 손실은 관측 채널과 누락 채널을 구분하지 않

고 전체 채널에 대해 계산되며, 관측 채널 정보는 

조건 입력과 마스크를 통해 암묵적으로 반영된다. 

 

추론 단계에서는 MI-9 채널만을 포함한 관측 신

호로부터 역확산을 수행하여 전체 22 채널 EEG 를 

복원한다. 초기 상태 𝒙𝑻는 가우시안 노이즈로 초

기화되며, 각 역확산 단계에서 모델 예측을 통해  

𝒙𝒕−𝟏을 계산한다. 이때 관측 채널의 값은 매 단계

마다 실제 관측값으로 강제 치환함으로써, 

 

𝒙𝒕
(𝒄)

= 𝒙𝒐𝒃𝒔
(𝒄)

, ∀𝒄 ∈ 𝓒𝒐𝒃𝒔, 

 

조건부 제약을 항상 만족하도록 설계하였다. 이를 

통해 모델은 관측 채널을 훼손하지 않으면서, 누

락 채널에 대해서만 확률적 복원을 수행하게 된다. 

 

이와 같은 조건부 확산 기반 채널 복원 모델은 

단일 시점 예측이나 보간과 달리, 시계열 구조와 

채널 간 상관관계를 동시에 고려한 확률적 복원을 

가능하게 한다. 또한 관측 채널 수나 위치가 변경

되더라도 마스크와 조건 입력만 교체함으로써 동

일한 프레임워크를 유지할 수 있어, 전극 수 최소

화를 전제로 한 BCI 시스템 설계에 유연하게 대

응할 수 있는 장점을 갖는다. 

 

2.3. 채널 복원 성능 평가 

 

조건부 확산 기반 EEG 채널 복원 모델의 복원 

정확도는 전체 채널 수준과 관측/비관측 채널을 
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구분한 수준에서 분석하였다. 복원 성능은 시간 

영역에서의 신호 재현 정도와 채널 간 상관 구조 

보존 여부를 중심으로 해석하였다. 

 

정량적 평가는 평균제곱오차(Mean Squared Error, 

MSE)와 피어슨 상관계수(Pearson correlation 

coefficient)를 사용하였다. MSE 는 복원 신호의 절

대적인 진폭 오차를 평가하는 지표이며, 상관계수

는 진폭 스케일에 독립적으로 시간적 파형 형태와 

위상 정합도를 평가한다. 모든 지표는 시도(trial)

와 시간 축에 대해 평균한 뒤 채널 단위로 계산되

었다. 

 

전체 22 채널 기준으로 복원 결과는 Overall MSE 

0.0578, Overall correlation 0.9656 을 기록하였다. 

이는 소수채널 관측만으로도 전체 EEG 시계열의 

시간적 구조를 높은 수준으로 재현할 수 있음을 

보여준다. 관측 조건으로 사용된 MI-9 채널의 경

우, 역확산 과정에서 각 단계마다 실제 관측값을 

강제 유지하도록 설계되었기 때문에 MSE 0.0, 

correlation 1.0 으로 나타났으며, 이는 조건부 확산 

과정이 관측 정보를 훼손하지 않음을 확인해준다. 

 

비관측 복원 대상인 나머지 13 개 채널에 대해서

는 평균 MSE 0.0978, 평균 correlation 0.9418 이 

관측되었다. 채널별 분석 결과, 중심 운동 영역

(C, CP 계열)과 공간적으로 인접한 채널에서는 상

대적으로 낮은 오차와 높은 상관도를 보였으며, 

두정–후두 영역 일부 채널에서는 오차가 증가하는 

경향이 나타났다. 이는 복원이 단순한 시간 보간

이 아니라, 관측 채널과의 공간적·기능적 연관성

을 반영한 결과임을 시사한다. 

 

시간 영역에서의 정성적 비교 결과, 복원 신호는 

원 신호의 주요 진동 패턴과 위상 구조를 안정적

으로 추종하였다. (Figure 3) 예시로 제시된 FC4 채

널의 단일 시도 파형 비교에서, 복원 신호는 진폭 

스케일과 시간적 변동을 전반적으로 잘 재현하며, 

국소적인 고주파 성분에서만 제한적인 차이가 관

찰되었다. 이러한 차이는 확률적 복원 과정에서의 

불확실성으로 해석될 수 있으나, 전체적인 리듬 

및 패턴 보존에는 큰 영향을 미치지 않았다. 

 

종합적으로, 제안한 조건부 확산 기반 EEG 채널 

복원 모델은 관측 채널을 완전히 보존하면서도 비

관측 채널에 대해 높은 상관 기반 복원을 달성하

였다. 이는 소수채널 EEG 환경에서 발생하는 공

간 정보 손실을 효과적으로 완화할 수 있음을 보

여주며, 이후 단계의 운동상상 분류 및 로봇 제어 

성능 향상을 위한 기반 신호로서 활용 가능함을 

시사한다. 

 

 
 

Fig. 3 Time-Domain comparison of original reconstructed 
EEG signals. 

 

 

3. Motor Imagery EEG 분류 모델 

 

본 연구에서는 BCIC IV-2a 데이터셋을 포함한 

표준 MI-EEG 벤치마크에서 우수한 분류 성능을 

보고한 state-of-the-art 운동상상 EEG 분류 모델을 

문헌으로부터 차용하여 사용하였다. 구체적으로는 

Altaheri et al.이 제안한 TCFormer 아키텍처를 기반

으로 분류 모델을 구성하였다.(11) 해당 모델은 다

중 커널 합성곱 기반의 초기 특징 추출, grouped-

query attention 을 활용한 Transformer 인코더, 그리

고 dilated causal convolution 을 사용하는 TCN 분류 

헤드를 결합한 구조로, BCIC IV-2a 를 포함한 다수

의 공개 MI-EEG 데이터셋에서 기존 CNN 및 

CNN–Transformer 계열 모델 대비 일관된 성능 향

상을 보고하였다. 

 

본 연구에서는 분류 모델의 구조적 변형이나 성

능 최적화보다는 입력 EEG 표현의 차이가 운동상

상 분류 성능 및 이후 로봇 제어 단계에 미치는 

영향을 분석하는 데 초점을 두며, 이를 위해 분류 

모델은 고정된 상태로 유지한 채 소수채널 EEG 

입력과 채널 복원된 EEG 입력을 동일한 분류기에 

적용하여 비교·분석한다. 이러한 설정은 채널 복

원 단계의 효과를 분류 모델 설계 요인과 분리하

여 해석할 수 있도록 하며, 이후 ROS2 기반 BCI 

로봇 제어 시스템까지 포함한 end-to-end 파이프라

인에서 입력 신호 품질이 시스템 전반에 미치는 

영향을 체계적으로 평가할 수 있는 기반을 제공한

다. 

 

3.1. Temporal Convolutional Transformer 
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TCFormer 는 EEG 신호의 비정상성과 낮은 신호 

대 잡음비 특성을 고려하여, 합성곱 기반의 국소 

특징 추출과 Transformer 기반의 전역 시간 문맥 

모델링을 결합한 하이브리드 구조로 설계되었다. 

전체적인 아키텍처 흐름은 Figure 4 에 도시되어 

있다. 

 

 
 

Fig. 4 Overall architecture of the TCFormer for motor 
imagery EEG classification. Adapted from 
Altaheri et al. 

 

입력 EEG 시계열 𝑿 ∈ 𝑹𝑪×𝑻는 먼저 다중 커널 

합성곱 블록을 통과한다. 이 블록에서는 서로 다

른 길이의 시간 커널을 병렬로 적용하여, μ 및 

β 리듬과 같이 서로 다른 시간 스케일의 신경 활

동을 동시에 포착한다(Figure 5). 이러한 다중 스

케일 접근은 단일 커널 기반 합성곱의 한계를 보

완하며, 운동상상 EEG 에서 중요한 주파수 대역

별 정보를 효과적으로 분리·강조한다. 

 

 
 

Fig. 5 Multi-kernel convolution block for multi-scale 
temporal feature extraction. Adapted from 
Altaheri et al. 

 

합성곱 블록에서 추출된 특징은 Transformer 인

코더로 전달되어 전역 시간 의존성을 모델링한다. 

TCFormer 에서는 표준 multi-head self-attention 대신 

grouped-query attention(GQA)을 사용한다. GQA 는 

여러 query head 가 key–value 표현을 공유하도록 

설계되어, 연산 복잡도를 줄이면서도 장기 시간 

관계를 효과적으로 학습할 수 있다(Figure 6). 또

한 상대적 시간 관계를 반영하기 위해 rotary 

positional embedding 이 적용되어, EEG 시계열에서 

중요한 시간적 순서를 자연스럽게 보존한다. 

 

 
 

Fig. 6 Comparison of multi-head, multi-query, and 
grouped-query attention mechanisms. Adapted 
from Altaheri et al. 

 

Transformer 인코더의 출력은 합성곱 기반 특징

과 결합된 후, TCN 분류 헤드로 전달된다. TCN

은 dilated causal convolution 을 사용하여 시간 축을 

따라 수용 영역을 확장함으로써, 인과성을 유지한 

상태에서 장·단기 시간 패턴을 통합한다. 최종적

으로 마지막 시점의 특징 벡터를 기반으로 운동상

상 클래스에 대한 로짓을 생성한다. 

 

이와 같이 TCFormer 는 다중 스케일 합성곱, 효

율적인 전역 주의 메커니즘, 그리고 인과적 시간 

디코딩을 단계적으로 결합한 구조를 갖는다. 본 

연구에서는 해당 아키텍처를 분류 단계의 기준 모

델로 사용하여, 입력 EEG 표현의 변화가 분류 성

능 및 이후 로봇 제어 단계에 미치는 영향을 분석

한다. 

 

3.2. 분류 성능 평가 

 

운동상상(4-class) 분류 성능 평가는 정확도

(Accuracy) 및 혼동행렬(Confusion Matrix)을 중심

으로 분석하였다. (Figure 7) 정확도는 테스트 세트

에서의 전체 정분류 비율로 산출하였으며, 혼동행

렬은 각 실제 클래스(행) 기준 정규화(%) 형태로 

제시하여 클래스별 오분류 패턴을 해석하였다. 학

습 과정에서 training loss 는 epoch 증가에 따라 지

속적으로 감소하였고, test loss 는 초반 급감 이후 

완만히 감소하며 안정적으로 수렴하였다. 이에 따

라 분류 정확도는 점진적으로 향상되어 최종적으

로 71.10%의 test accuracy 와 0.7561 의 test loss 를 

기록하였다. 클래스별 정확도(각 클래스 support =  

130)는 Class 0: 62.31%, Class 1: 75.97%, Class 2: 
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76.15%, Class 3: 70.00%로 나타났으며, Class 1 과 

Class 2 에서 상대적으로 높은 분류 성능이 관측되

었다. 혼동행렬 분석 결과, Class 0 은 Class 1 및 

Class 2로 오분류되는 비율이 비교적 높았고, Class 

3 역시 Class 2 및 Class 1 과의 혼동이 일정 수준 

존재하였다. 이는 일부 운동상상 클래스 간 시간–

주파수 특성의 중첩으로 인해 결정경계가 근접하

게 형성되었기 때문으로 해석될 수 있다. 

 

 
 

Fig. 7 Confusion matrix (%) of the 4-class motor imagery 
EEG classification on the test set. Values are 
normalized per true class. 

 

본 연구에서 사용한 TCFormer 기반 분류 모델

의 성능은 BCIC IV-2a 데이터셋을 사용한 기존 운

동상상 EEG 분류 문헌들과의 비교를 통해 해석할 

수 있다. 예를 들어, Altaheri et al.은 동일 데이터

셋을 대상으로 TCFormer 아키텍처를 적용하여 평

가 프로토콜에 따라 약 62–63%에서 83–85% 범위의 

정확도를 보고하였다. 이 외에도 CNN, CNN–RNN, 

CNN–Transformer 계열의 다수 연구에서 BCIC IV-

2a 에 대해 60% 후반에서 70% 초반대의 정확도가 

일반적으로 보고되고 있다.(11) 이러한 맥락에서 

본 연구의 71.10% 분류 정확도는 동일 데이터셋을 

사용한 기존 분류 모델들과 비교했을 때 성능 저

하 없이 경쟁력 있는 수준에 해당하며, 표준 MI-

EEG 분류 설정에서 안정적인 기준 성능을 제공한

다고 볼 수 있다. 

 

종합하면, TCFormer 기반 분류기는 본 연구의 

실험 설정 하에서 약 71% 수준의 4-class 운동상상 

분류 성능을 달성하였으며, 이는 BCIC IV-2a 를 사

용한 기존 분류 문헌들과 비교하여 동등하거나 유

사한 성능 범위에 위치한다. 본 연구에서는 이 분

류 모델을 최적화 자체의 대상으로 삼기보다는, 

이후 장에서 분석할 채널 복원 전·후 입력 차이

에 따른 분류 성능 변화와 ROS2 기반 로봇 제어 

성능 비교를 위한 기준선(baseline)으로 활용한다. 

 

 

4. ROS2 기반 BCI 로봇 제어 시스템 

 

4.1. End-to-End 시스템 개요 

 

본 연구에서 제안하는 ROS2 기반 BCI 로봇 제

어 시스템은 EEG 기반 사용자 의도 추론 결과를 

로봇의 이동 제어로 직접 연결하되, 실제 환경에

서의 안전성을 확보하기 위해 환경 인식 기반의 

제한적 안전 필터를 결합한 end-to-end 파이프라인

으로 구성된다. 시스템 설계의 핵심 원칙은 (ⅰ) 사

용자 의도를 제어의 중심에 두고, (ⅱ) 자율주행 

기능을 포함하지 않으며, (ⅲ) 위험 상황에서만 최

소한의 개입을 수행하는 것이다. 

 

전체 파이프라인은 크게 세 단계로 구성된다. 

첫째, EEG 기반 BCI 계층에서는 운동상상 분류 

결과를 시간 순서대로 해석하여 로봇의 이동 의도

를 생성한다. 분류된 MI 클래스(LEFT, RIGHT, 

FEET, TONGUE)는 사전에 정의된 매핑 규칙에 

따라 선속도(linear velocity)와 각속도(angular 

velocity)로 변환되며, 해당 제어 명령은 /cmd_vel_ 

bci 토픽으로 발행된다. 이 단계에서 생성되는 명

령은 환경 정보를 고려하지 않은 순수 사용자 의

도에 해당한다. 

 

둘째, 환경 인식 계층에서는 로봇에 장착된 

LiDAR 센서로부터 획득한 거리 정보를 기반으로 

전방 장애물과의 최소 거리 𝒅𝒎𝒊𝒏을 계산한다. 이 

값은 로봇의 현재 이동 방향에 대해 가장 위험한 

장애물과의 상대적 근접도를 나타내는 지표로 사

용되며, 별도의 경로 계획이나 목표점 추종은 수

행하지 않는다. 

 

셋째, 의도–환경 결합 계층에서는 BCI 기반 제

어 명령과 LiDAR 기반 위험 지표를 결합하여 최

종 이동 명령을 생성한다. 이 기능은 env_filter 노

드에서 수행되며, 사전에 정의된 임계값 

𝑫𝒔𝒂𝒇𝒆,𝑫𝒔𝒕𝒐𝒑 및 감속 계수 𝒌에 따라 다음과 같은 
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규칙 기반 정책을 적용한다. 

 

 𝒅𝒎𝒊𝒏 > 𝑫𝒔𝒂𝒇𝒆: 사용자 의도 명령 수행 

 𝑫𝒔𝒕𝒐𝒑 < 𝒅𝒎𝒊𝒏 ≤ 𝑫𝒔𝒂𝒇𝒆: 전진 성분만 감속 

 𝒅𝒎𝒊𝒏 ≤ 𝑫𝒔𝒕𝒐𝒑: 전진 정지, 회전 의도 유지 

 

이러한 설계는 로봇의 기본 동작을 항상 사용자 

의도에 종속시키면서도, 충돌 위험이 존재하는 구

간에서만 제한적으로 개입하도록 한다. 즉, 본 시

스템의 안전 필터는 자율주행 알고리즘을 대체하

거나 우회하는 기능이 아니라, 사용자 의도를 최

대한 보존한 상태에서의 보호 장치로 위치한다. 

 

제안 시스템은 Gazebo 기반 시뮬레이션 환경에

서 검증되었으며, 동일한 BCI 명령 시퀀스와 환

경 조건 하에서 반복 실험이 가능하도록 ROS2 파

라미터 파일(YAML)과 rosbag 기반 기록·재생 구

조를 함께 사용하였다. 이를 통해 end-to-end 제어 

동작의 재현성과 실험 결과의 일관성을 확보하였

다. 

 

4.2. ROS2 시스템 아키텍처 

 

제안하는 BCI 로봇 제어 시스템은 ROS2 워크

스페이스 내에서 기능별로 분리된 다수의 패키지

로 구성되며, 각 패키지는 명확한 역할을 갖는 모

듈형 구조를 따른다. 이러한 설계는 시스템 확장

성과 디버깅 용이성을 높이는 동시에, 논문 실험

의 재현성을 보장하기 위한 목적을 가진다. 

 

ROS2 워크스페이스(ros2_ws/src)는 다섯 개의 

주요 패키지로 구성된다. bci_interface 패키지는 

EEG 기반 사용자 의도를 로봇 제어 명령으로 변환

하는 계층으로, MI 클래스 시퀀스를 시간적으로 

재생하여 /cmd_vel_bci 토픽을 발행한다. 클래스별 

속도 값, 명령 지속 시간 등은 YAML 파라미터로 

정의되어 있어, 동일한 실험 조건을 반복적으로 

재현할 수 있다. 

 

env_filter 패키지는 본 시스템의 핵심인 환경 안

전 필터를 구현한다. 해당 노드는 /cmd_vel_bci 와 

LiDAR 의 /scan 토픽을 동시에 구독하며, 전방 영

역에 대한 최소 거리 𝒅𝒎𝒊𝒏을 계산한 뒤 규칙 기

반 정책에 따라 최종 /cmd_vel 명령을 생성한다. 

감속 임계값과 계수는 모두 ROS2 파라미터로 관

리되어, 제어 정책의 변경이 코드 수정 없이 가능

하다. 

 

robot_description 패키지는 로봇의 기구학적 구

조와 센서 프레임을 정의하는 URDF/Xacro 파일을 

포함한다.(Figure 8) 본 연구에서는 차동 구동

(differential drive) 구조의 이동 로봇을 가정하였으

며, Gazebo diff-drive 플러그인이 /cmd_vel 토픽을 

직접 소비하도록 설정하였다. 별도의 저수준 제어 

노드는 두지 않음으로써, 제어 흐름을 단순화하고 

BCI–환경 필터의 역할을 명확히 하였다. 

 

 
 

Fig. 8 RViz2 visualization of the BCI-controlled robot and 
LiDAR perception. 

 

robot_gazebo 패키지는 시뮬레이션 환경을 담당

하며, Gazebo 월드 파일과 LiDAR 센서 설정, 그

리고 ROS–Gazebo 간 토픽 동기화를 위한 bridge 

설정을 포함한다. (Figure 9) 이를 통해 /scan 및 

/clock 토픽이 ROS2 환경에서 안정적으로 제공된

다. 

 

 
 

Fig. 9 Obstacle avoidance behavior in the Gazebo 
simulation environment. 

 

마지막으로 robot_bringup 패키지는 전체 시스템

을 단일 launch 파일로 실행하기 위한 통합 계층

이다. 해당 launch 파일은 Gazebo 시뮬레이션, 
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BCI 노드, 환경 안전 필터 노드를 동시에 실행하

여, end-to-end 제어 파이프라인을 한 번의 명령으

로 재현할 수 있도록 한다. 

 

 
 

Fig. 10 ROS2 node–topic graph of the BCI robot control 
system. 

 

이와 같은 ROS2 아키텍처는 제어 논리를 BCI 

계층과 안전 필터 계층에 집중시키고, 로봇 구동

과 센서 처리는 표준 플러그인에 위임함으로써 구

조적 단순성과 실험 재현성을 동시에 확보한다. 

이는 이후 실제 로봇 또는 온라인 EEG 입력으로 

확장할 때에도 동일한 인터페이스를 유지할 수 있

는 기반을 제공한다. 

 

 

5. 결과 

 

본 연구에서는 제안한 ROS2 기반 BCI 로봇 제

어 시스템의 end-to-end 동작을 시뮬레이션 환경에

서 검증하였다. 평가의 목적은 (ⅰ) EEG 기반 사용

자 의도가 로봇 제어 명령으로 안정적으로 전달되

는지, (ⅱ) 환경 위험 상황에서 안전 필터가 사용

자 의도를 보존한 상태로 제한적 개입을 수행하는

지, 그리고 (ⅲ) 동일 조건에서 실험 결과가 재현 

가능한지를 확인하는 데 있다. 

 

우선 장애물이 존재하지 않는 환경에서 로봇의 

동작을 분석하였다. 이 조건에서 LiDAR 기반 최

소 거리 𝒅𝐦𝐢𝐧은 항상 안전 임계 값 𝑫safe보다 크게 

유지되며, 환경 안전 필터는 어떠한 개입도 수행

하지 않는다. 시뮬레이션 결과, 최종 제어 명령

(/cmd_vel)은 BCI 기반 제어 명령(/cmd_vel_bci)과 

수치적으로 일치하였고, 전진, 좌·우회전, 정지

와 같은 운동상상 클래스에 대응하는 로봇 동작이 

시간적으로 안정적이고 예측 가능하게 재현되었다. 

이는 제안 시스템이 환경 제약이 없는 조건에서 

사용자 의도를 왜곡 없이 반영함을 보여준다. 

 

정적 장애물이 배치된 환경에서는 로봇이 장애

물에 접근함에 따라 LiDAR 센서로부터 계산된 

𝒅𝐦𝐢𝐧값이 감소하였고, 이에 따라 환경 안전 필터

가 단계적으로 개입하였다. 𝑫stop < 𝒅𝐦𝐢𝐧 ≤ 𝑫safe구

간에서는 전방 이동 성분이 감속 계수 𝒌에 따라 

감소하였으며, 𝒅𝐦𝐢𝐧 ≤ 𝑫stop조건에서는 전진 이동

이 완전히 정지되었다. 이 과정에서 각속도 성분

은 유지되어, 사용자가 의도한 회전 동작은 지속

적으로 반영되었다. 즉, 로봇은 충돌 위험을 회피

하면서도 가능한 범위 내에서 사용자 의도를 최대

한 보존하는 동작을 보였다. 이러한 결과는 안전 

필터가 자율주행이나 경로 계획을 수행하지 않고, 

해석 가능한 규칙 기반 개입만을 수행하도록 설계

되었음을 실험적으로 확인해준다. 

 

시스템의 재현성을 검증하기 위해 동일한 BCI 

명령 시퀀스와 동일한 환경 설정 하에서 반복 실

험을 수행하였다. 모든 실험에서는 ROS2 파라미

터 파일(YAML)을 통해 속도 매핑 및 안전 임계 

값을 고정하였고, rosbag 기반 기록 및 재생을 사

용하여 입력 조건을 동일하게 유지하였다. 그 결

과, 장애물 유무에 따른 감속 및 정지 시점, 그리

고 로봇의 최종 위치가 반복 실험 간에 일관되게 

재현되었으며, 제어 명령의 시간적 흐름 또한 동

일하게 유지되었다. 이는 제안한 ROS2 기반 아키

텍처가 실험 조건의 명시적 고정과 반복 검증에 

적합한 구조임을 보여준다. 

 

로봇의 동작과 센서 인식 결과는 RViz2 및 

Gazebo 시뮬레이션 환경에서 시각적으로 검증하

였다. RViz2 에서는 로봇 모델, 좌표 프레임, 

LiDAR 포인트 클라우드를 통해 센서 통합과 프레

임 정합성을 확인하였고, Gazebo 환경에서는 장애

물 코스를 따라 이동하며 감속 및 정지를 수행하

는 로봇의 실제 동작을 관찰하였다. 이러한 end-

to-end 동작 결과는 Supplementary video 로 제공되

며, 해당 영상은 본 논문의 실험 설정과 동일한 

조건에서 수행된 시뮬레이션을 기록한 것이다. 

Supplementary video 는 깃헙(GitHub) 저장소를 통

해 공개되며, 저장소 주소와 접근 방법은 7 장 데

이터 및 실험 세부 설정에서 상세히 기술한다. 

 

 

6. 논의 

 

본 연구는 소수채널 EEG 환경에서 발생하는 정

보 손실 문제를 생성 모델 기반 채널 복원으로 완

화하고, 이를 운동상상 분류 및 ROS2 기반 로봇 

제어로 연결하는 end-to-end BCI 로봇 제어 시스템

을 제안하였다. 본 논의는 단일 모듈의 성능 향상
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보다는 전극 수 최소화라는 실사용 제약 하에서 

시스템 수준의 안정성과 재현성을 어떻게 확보했

는지에 초점을 둔다. 

 

조건부 확산 모델 기반 EEG 채널 복원은 관측 

채널을 완전히 보존하면서 비관측 채널의 공간 정

보를 확률적으로 보완함으로써, 이후 분류 단계에

서 입력 신호의 신뢰성을 유지하는 역할을 수행하

였다. 이는 채널 복원을 단순한 전처리 기법이 아

니라, 전극 수 감소로 인한 구조적 정보 손실을 

완화하는 표현 복원 단계로 해석할 수 있음을 시

사한다. 

 

운동상상 분류 단계에서는 문헌 기반의 TCForm 

-er 모델을 기준선으로 사용하여, 입력 EEG 표현

의 차이가 시스템 전반에 미치는 영향을 분리하여 

분석하였다. 약 71% 수준의 4-class 분류 성능은 

BCIC IV-2a 데이터셋을 사용한 기존 연구들과 비

교해 경쟁력 있는 범위에 해당하며, 이후 로봇 제

어 실험을 위한 안정적인 기준선을 제공한다. 

 

ROS2 기반 로봇 제어 시스템에서는 사용자 의

도를 제어의 중심에 두고, LiDAR 기반 위험 상황

에서만 제한적으로 개입하는 의도 보존형 안전 필

터를 적용하였다. 이 구조는 충돌을 방지하면서도 

회전 의도를 유지함으로써, 안전 개입으로 인한 

사용자 의도 상실 문제를 완화한다. 또한 모듈형 

ROS2 아키텍처와 파라미터화된 제어 정책은 실험 

재현성과 시스템 확장성을 동시에 확보한다. 

 

한계로는 오프라인 EEG 기반 검증, 정적 장애

물 가정, 시뮬레이션 환경에 국한된 평가를 들 수 

있다. 그럼에도 불구하고 본 연구는 전극 수 최소

화를 전제로 한 생성 모델 기반 신호 복원과 의도 

보존형 안전 제어를 결합함으로써, 비침습 BCI 의 

로봇 제어 확장을 위한 실용적인 시스템 설계 방

향을 제시한다. 

 

 

7. 데이터 및 실험 세부 설정 

 

본 연구에서 사용된 모든 EEG 데이터셋은 공개적

으로 이용 가능하다. BCIC IV-2a 운동 상상 EEG 

데이터셋은 BCI Competition IV 저장소(http://www 

.bbci.de/competition/iv/)에서 다운로드할 수 있다. 

본 연구의 결과를 뒷받침하는 전처리 스크립트, 

제안된 조건부 확산 모델(DDPM) 및 TCFormer 

모델, 그리고 노드 구현, launch 파일, 파라미터 

YAML 파일, 로봇 시뮬레이션 설명을 포함한 end 

-to-end BCI 로봇 제어를 위한 ROS2 패키지 구성 

파일들은 다음 저장소에서 제공된다: https://github 

.com/YoungwoongYoun/EEG-robotics. 
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